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SYNOPSIS

BACKGROUND

The STAR Gyro is a vibrating-string instrument which is partic-
ularly attractive because of its potential high reliability, small size,
low weight, and low power requirements. The instrument contains no
parts which slide or roll. It has no liqdid which can become contami-
nated and no tight clearances between the parts. Because of the
exceptionally low power requirement, the instrument is expected to
have quick warmup capability, high reliability after long periods of
being inoperative, and high reliability for long continuous operation.

It has been recognized since the inception of the STAR Gyro Pro-
gram that it is possible to ""torque' this instrument. However, other
development aspects being more important, torquing has received little
study until recently. Previous to this program, some work had been
done on electromagnetically torquing the instrument during first mode
operation.

PROGRAM GOALS

It was the purpose of this program to develop the theory of STAR
Gyro torquing in sufficient dctail to permit the accurate prediction of
torquing scale factors for any future instrument design, and to deter-
mine the effect of all important error sources. It was also the purpose
of this program to conduct torquing experimental work to demonstrate
the feasibility of torquing at rates from 0 to 2000 degrees per hour,
and to make measurements to provide data sufficiently accurate to be
used for checking the theoretical results being developed. Other
detailed objectives are discussed at appropriate locations in the report.

MAJOR RESULTS
The most important results of this study are discussed bellow,
without attempting to recount all details of this study, or the methods by

which these¢ results were obtained:

1.  In Section 3 of this report, the general theory for the responsec
of a vibrating string (operating in its nth mode) to an arbitrary

111
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applicd laters! force is developed. Although this development

tollows the lines of previous work (Reference 2), it has been

expanded to include the following results:

a. Response, with string operating in an arbitrary ath
mode, has been obtained in Equations 3-14 and 3-15.

b. The amount of elliptical, subharmonic, and harmonic
motion gencrated incidentially to the desired torquing
precession is obtained in Paragraph 3, 4,

c. A time function for a torquing pulse has been found
which will eliminate all elliptical, subharimonic, and
harmonic extraneous string motion, independent of the
space function which is used for the torquing (sce
Paragrapn 3.5) while producing the desired torquing
response,

d. Using this optimum pulse shape, the net pulse sensitiv-
ity, including the cffect of phnasc-angle errors in the
pulse, is obtained in Equations 3-31 and 3-32, It is
also shown that sensitivity to these phase errors can be
minimized without adverse cffect on other optimization
(Paragraph 3. 8). .

In Section 4, the expression is derived for the electrostatic

force on a fiber between twd varallel plates. The fiber and

two plates may be at three different voltages. Although this
problem may not appear difficult (the force between a cylinder
and a single plate, for example, is well known), the solution
could not be found in the literature and seems worth pres enting
in some detail. The result, of course, has a somewhat more

general application than thiat required here. In Figure 4-8

the expressions required to calculate this force are

summarized and the terms arewedetined. The expression

tor Cyw, the capacity trom the wire to the pair of plates

connected in paraliel (Equation 4-28), is « subsidiary result

which also may find independent application, as it has not

been found in the literature. .

Reference 1 presents the basic theory of the vibrating string
as an angular notion sensor, including (1) the conditions jor
the desired vibration 1o start under parametric excitaiion,
(2) the conditions for this oscillation to continue, (3) the
amplitude of this oscillation under viven drive conditions,
(4) the e¢xpression tor anisoclastic precession rate, (5) the
very important condition which brings this precession rate to
zero, known as the “critical” condition, and tinally (o) i
damiping bias or precession rate. These cxpressiors in

this reference, however, are limited to first mode operation.



C5-1277/32

In Section 5 these expressions are obtained for the operation
of the string in an arbitrary nth mode. Although the results
in Section 5 are required for application here to the torquing
expression, these results of course have considerably wider
application and are im\mrtant in themselves. Figure 5-2
depicts these results tor tirst and second mode operation and
summarizes the important equations, so that the figure is
self-contained and convenient for reference. )

The major result in terms of program objective is contained

in the expression for net torquing scale factor (Equation 6-15},
along with the expression for string amplitude (Equation 6-21),
and the summary of definitions following these equations. The

_expression for error terms tollows directly from these

equations and may be expressed as in Equations 6-49, 6-51,
6-59, or in other ways. A typical method of applying these
results to a particular error budget is illustrated in the
paragraph containing Equation 6-60.

Another useful result contained in Section 6 is the expression
for string pickoff sensitivity obtained when a transformer

is used to tune the pick-off capacities to resonance, as
illustrated in Figure 6-4. This is obtained by using the
capacity-variation results in Section 4 and is given in
Equations 6-43 and 6-47.

The specific program goal of showing torquing feasibility for

rates up to 2000 degree per hour was achieved electrostatically

with no particular ditficulty. Electrostatic torquing rates
of one or even two or more orders of magnitude greater than
this appear attainable with practical electronic and instrument

configurations.

Finally, the experimental work has, within the general
accuracy of the data, served to substantiate the theoretical
expressions. The parameters during tests were, in general,
varied over a wider range than would be of interest in
normal operation, the purpose being to check the theoretical
expressions with a greater degree of resolution.  These
comparisons are presented and discussed in Section 8.

CONCLUSION

The results of this study indicate thuat there is no fundamental or

practical limitation in the precision torquing of the SIAR Gyro. ['he
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preferable means of torquing appears to be electrostatic.  This
method can obtain high rates of torquing with rceasonable voltages,
neglipible power consumption, and an accuracy which appears to be
limited only by the degree of precision which is built into the torquing
system in accordance with the error model.

- R . - - - L. . .




1 ®
N
l 2-
l 3.

4.
, ©

PRI SR BN TR Y T T e il o s« <

C5-1277/32

CONTENTS

Introduction
1.1 Description of the STAR Gyro
1.2 General Concept of STAR Torquing
1.3

Torquing History and the Approach
in the Current Study . .

Comparative Study of Electromagnetic and
Electrostatic Torquing

2.1 Introduction - -\
2.2 Consideration of the Two
Torquing Methods
2.2.1 Temperature Effects
2.2.2 Physical Instrument Considerations
2.2.3 Electronic Considerations
2.2.4 Accuracy
2.3 Conclusion (A

Torquing and Lateral-Force Response of the
Vibration-String Gyro in Any Mode

.1 Sunimary

General Lateral-Forcing Response

Normal ""Torquing' Response-

Elliptical, Harmonic and Subharmonic

Production

3.5 Harmonic and Subharmonic Elimination-
3.5.1 Space Function Only
3.5.2 Time Function Only

3.6 Harmonic Generation by a Single-Sine-Wave
Pulse — Second Mode

3.7 Pulse-Interval and Phase Torquing Errors
(Independent of any Harmonics Generated)

3.8 Conclusion

w W W W
[NV

Electrostatic Force on a Fibre Between Two Plates

1S

.1 Force Equation -

.2 Wire-to-Parallel-Plate Cdpacuy
4.3 Special Case, One Plate

>

vii




Cs-1277/32

CONTENTS (CONT)

for (H/’t’o) =10

4. .
4.5 Special Casc, String Centered e e

4 Plots
4. 5.
4.5.
4.5,
4.5,

-

th
5. General n

Reduced Equation . « o . ..
Maximum Force . . . . . . .
Increase of Force Due to Second Plate .
Maxinur 'Driveé = Minimum Pickup -

[ N SV

Modce String Equations

6. Determination of Detailed Model for STAR Gyro

Torquing .
6.1 Introduction - - « .« .« o« < . .
6.2 Devciopment -« -« . ..o oo
6.2.1 Combined Torquing Expressions .

6.2.2 Effect of Plate Width and Curvature* °
6.2.3 Platform Servo~-Error Effect. - -
6.2.4 String Amplitude Pickoff Sensitivity

6.3 Torquing Errors- - -+ =« =« .« « .

7. Laboratory Mechanization for Providing
STAR Torquing Data - -+« «  « « « «

7.1 Introduction - . . . . . . . .
7.2 Detailed Consideration - - . . . .

7.2.
7.2,
7.2.

1 Circuit Consideration T
2 Laboratory Setup Operation
3 Data Accumulation Technique - .

8. Experimental Results and Comparisons
to Theoretical Results « .« « « .« .

8.
8.
8. 2.

8.

¥

\

1 Introduction - « Y « « .+ o . .
2 Torquing Results and Comparisons

I Absolute Value of Torquing Scale
Factor—Experimental vs Theorectical

.2 String Amplitude Pickoff Sensitivity—

Experimental vs Theoretical.

.3 Torquing Pulse Scaic Factor vs Torqguing

Pulsec Rate




. .

8.
8.
8.

¥}

to N

2.

.9
.10

11

C5-1277/32

CONTENTS (CONT)

Effect of Torque Pulse Magnitude Change
on Torquing Pulse Scale Factor - .
Effect of Torque Pulse Phase Shift Due to
Shifts in the String Reference Slg,nal (2-volt
peak-to-peak pulses) . S

Effect of Torquing Pulse Phase Shift Due to
Shifts in the String Reference Signal (l-volt
peak-to-peak pulses) .
Effect of Temperature Variations on
Torquing Pulse Scale Factor.

Effects of Torque Pulse Phase Shlfts in
Pulse Turn-On Phase and Pulse Turn-Qff
Phase « e 0.
Effect of D- C Torqulno Bias .

Effect of Harmonics

Torque Pulse Phase and Amphtude Stabxhty

8.3 Conclusions

References

ix

Page

. 8-18
. 8-24
- 8-25
- 8-25
- 8-27



w
t
w

W
¥
-~J

4-8

G BN R =EEm &N
¥~
H
o

u

C5-1277/32

ILLUSTRATIONS

Page
String Equations, Illustrated for
String Vibration in Second Mode, n = 2 . . . . 3-2
Two-Cycle Pulse in Second Mode
Vibration . . . . . . . . . . . . . 3.3
The Single-Sine-Wave Pulse, Tssp (tl) < s+« 3.13

wase Angles 0, , and 6 , Defini
Phase Angle 91. Osa and Gd Defining

Switchitg-Time and Torquing-Wave Phases.

(Harmonics are Eliminated if k = n, But

This Development not Restrictedto k = n.) - . . 3-16
Cylindrical Fibre and Electrostatic Plates . . . 4-1
Cupacity Model-Three Stray Capacitors to

Ground and Three Interelectrode Capacities « - - 4-2
Relative Voltage Picture and Dimensions.,

CW is Capacity From Cylinder to Both

Plates Paralleled . . . . . . . . . . . 4-4
Interelectrode Capacity in Terms of Geometry.
C Is Capacity From Cylinder to Both

w

Plates Parailleled . . .+ . + .+ ¢ .+ .+ o . 4-6
Illustration of Cw' a Function of H, «, ro,

ILand € . . . .« .. o e e . ’ - 4-10
Central Portion of Infinite Set of Line

Charges Used to Obtain Desired Boundary

Conditions at A, B, and { . . . . . . . . 4-11
Grouping of Charges in the Individual Terms

in Equations (4-26) and (4-24), and Distances

to Central Charge. Subscripts of A Correspond

to n's in Equation (4-25), etc. - . . . . . . 4-12
Summary--Genceral Equation for Force.

Equations (4-22), (4-28), (4-33), (4-32),

(4-34) as well as (4-9), (4-2) and (4-18) - - - * 4-15%
Capacity Between Cylinder and One or Two

Plates, for Ratio H/r =10 - e
e
, . H
Force on Cylinder for = 10, vs w at
o
\/'ariOUS -v /\, . . . . . . . . . . - - ‘i—:u
s P
\
X



4-12

| I |
N R W b

PURPREPSEPUEPS EEN PN I
]

-~
[}
0

7-9

7-10
7-11
7-12

C5-1277/32

ILLUSTRATIONS (Cont)

Force Between Fibre (or Cylinder)
and Single Plates (a and c) and on

Fibre With Two Plates .
Forces in Figure 4-11, F, U?Z- Fl)
and Their Ratio < . . . . S . . e

. 4 . : : th
A Vibrating String Operating in the n Mode -
Parametrically-=Driven Vibrating String

Characterisitcs for the n th Mode

Electrostatic Plate Geon)ctly String is
Vibrating in Second Mode in a Vertical Plane.
Free-Hand Plots of Fields. (Field Shown

in First Quadrant Only) <
Vibrating String Gyro (STAR) and Platform
Response to Torquing - AR

String Amplitude Pick-off Circuit

Star Gyro Electrostatic Tor qumg Loop <t
Pick-off Buffer Amplifier :
Rejection Pulse Forming Network -+ = =~ = °
Tuned Transformer Amplifier

Pick-off Channel Filters -

Pulse Forming and Synchronization Circuitry .
Timing Diagram Depicting Logic Being Performed
by Pulse Forming and Synchronization Circuitry -
Master Signal Flow Schematic for Pulse Forming
and Synchronization Circuitry

Torque Pulse Pornnng Log1c - S1grdl erlng
Schematic .
Analog Gate Schematic

Zero-Cross Detector Wiring Schematic
Oscillogram 7. 1: Normally Monitored Signals
Throughout the STAR Gyro Electrostatic

Torquing Mechanization . . .
Oscillogram 7.2: Pickoff Error Slgrals at
Various TP's in the Servo Channel. Used

to Verify Loop Gains (Note Phase Reversal
Between Top and Bottomm Traces in Photograph) -

%1

Page
4-22
4-23
5«1
5-6
6-1
6-11
6-12
6-14
7-2
7-5
7-6
1-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-17
717



C5-1277/32
ILLUSTRATIONS (Cont)

Page

Oscillogram 7. 3: Demodulator Phasing

With Respect to Disk Drive Voltage.

Normaliy Used for Demodulator Phasing

Checks. (Note That the Error Signal

Phase has Been Reversed Between the

Top and Bottom Traces)s + =+ =+« =+ + =« =« 7-18
Oscillogram 7.4: Pickoff Error Signal

Phasing With Respect to Disk Drive

Voltage. Normally Used for Error

Channel Phasing Checks. (Note That

the Error Signal has Been Reversed

Between the Top and Bottom T'races) - - -« 7-18
Oscillogram 7.5: String Amplitude

Reference Phasing With Respect to

the Disk Pickoff Voltage R 7-19
Oscillogram 7,6: Torque Pulse Phasing
With Respect to the Disk Drive Voltage -« 7-19

Oscillogram 7.7: Representative Signals

When Torguing at Maximum Rate in

Both Directions - . . . . . . . . . . 7-20
Oscillogram 7.8: Representative Signals

When Torquing at One-Half of Maximum

Torquing Rate in Both Directions - . . . . . 7-20
Oscillogram 7, 9: Error Angle Build-up

During Torquing With Platform Servo

Loop Opcned . . . . . . . . . . . . 7-21
Oscillogram 7.10: Representative Toraquing

Pulse With Various Turn-on and Turn-otf

Times (‘Jd = 0, ed = 90 Degrees) - S 7-21

Oscillogram 7. 11: Representative Torquing
Pulse With Various Turn-on and Turn-off
Times (0d =90 Degrees, 0, =+135 Degrees) - - 7-22

d
Torquing Pulse Scule Factor vs Pulse Phasing
Using 2V Pecuak-to-Peak Pulses S e e e 8-10
Torquing Pulse Scale Factor vs Pulse Phasing )
Using 1V Peak-to-Peak Pulses. . . .« = 8-13

xii



ra

8-4

8-6

C5-1277/32

ILLUSTRATIONS (Cont)

Equation of Torque Pulse Scale

Factor as a Function of Torque

Pulse Phasing With a Sketch of
Waveform to Define Terms -
Representative Torque Pulse Waveform
for Various Turn-on and Turn-off Times
(6= 0), Only the Left Torquing Pulse

is Depicted . . . . . .
Torque Pulse Scale Factor as a Function
of Turn-on and Turn-off Time (0,.= 0)
Experimental Results are Normalized to

Unity by the Od = Osa = 0 Data

Runs to Determine Scale Factor as a
Function of Various Torquing Pulse
Waveforms . . o e . o e

© TABLES

Torquing Pulse Scale Factor vs
Torquing Pulse Rate -

Torque Pulse Scale Factor vs
Torque Pulse Amplitude

Torquing Pulse Scale Factor vs
Pulse Phasing (2-volt p-p pulses)
Torquing Pulse Scale Factor vs
Pulse Phasing (l-volt p-p pulses) .
Comparison of Torquing Data Scale
Factor to Predicted Scaie Factor
with Temperature Change

Forque Pulse Scale Factor as a
Function of Tension and Turn-off Times

xiii

Page




C5-1277/32

X1v




X S N O G NN D N e B

C5-1277/32

1. INTRODUCTION

1.1 DESCRIPTION OF THE STAR GYRO

The STAR (vibrating-string) Gyro, from an operational point of
view, may be referred to as a ''position gyro, ' The string vibrates
essentially in a plane, driven by end-fastening longitudinal motion at
double the string vibration frequency. This drive does not coerce the
plane of string vibration toward any specific orientation. The string,
in a manner analogous to the Foucalt pendulum, vibrates so that its
plane tends to remain angularly fixed in inertial space. (In both, the
energy of the stored angular information is periodically interchanged
between the potential energy associated with a position vector, and the
kinetic energy associated with a momentum vector.) Thus, if the
structure supporting the string is allowed to turn about the axis of the
string, the plane of string vibration tends to remain fixed in inertial
space, although the string itself rotates with the supports. Thus, a
sensor attached to the case of the instrument, detecting the angle between
the plane of string vibration and the case; will, during normal operation
of the instrument, read out the angle in incrtial space through which the
instrument has turned, in the same manner as a free-gimballed
conventional position gyro.

Although the drive itself does not tend to coerce the string plane,
there are important effects which do tend to rotate the string plane
toward a preferred case-oriented angle of operation. These effects
must be considered if operation of the vibrating string is to be attained
with sufficient angular stability that we could apply the term "gyro' to
the instrument. The dominant cffect, by a large margin, is that result-
ing from clastic asymmetry (anisdelasticity) of the fibre ends and fibre
end mountings. Even when care is taken to construct a uniform fibre
and mounting, the string plane will be observed to tend strongly toward
a preferred plane. .

Reference 1 presents an analysis of this anisoclastic behavior and
shows the way in which it causces the string planc to precess toward
a preferrcd plane, the rate of precession being proportional to the "angle
off'" of this plane. Of particular importance in the results of this
solution is the fact that, for certain relationships between the frequency
and amplitude of the string drive, the precession rate of the string plane,
at a given angle off, goes through zero and reverses direction.  The
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condition at which this precession rate goes through zcro has been
termed the "critical” condition. Thus, ata given drive amplitude we
have a critical drive frequency. At a given drive frequency we have a
critical drive amplitude. By maintaining the drive condition as closely
as possible to critical, while operating the string as closely as possible
to its preferred clastic plane, it 1s possible to obtain string-plane
stability sufficiently good that we may think of the vibrating string as a

position gyro.

When the anisoelastic bias is thus controlled by having operation
ncar "critical, ' the next dominant effect which is seen and which must
be eliminated by careful construction of the instrument is a bias which
results from asymmetrical loss or damping. This effect also involves
a principal axis but unfortunately the elastic and damping axes arc not,
The damping cffect is basically much smaller

in general, coincident.
but its control presents difficulties which

than the anisoclastic effect,
are now under intensive inve stigation.

1.2 GENERAL CONCEPT OF STAR TORQUING

For many applications in which gyroscopus are used, it is desirable
to be able to ""torque' the gyro. Torquing in this sense means the
causing of the stable clement to precess in proportion to an applied
torquing signal. In the usual application, the gyro pickoff senses the
offsct angle produccd by this torquing and, by mcans of the platform
servo, rotates the platform and gyro case until this sensed offsct

angle is nulled out.

In the case of the STAR Gyro we find that the precessing of the
stable clement (the string plane) is produced, not by an actual torque,
but by the application of a somewhat different force. This force is
distributed along the string and is perpendicular to the string plane.
In analysis, it 1s convenient to think of the torquing force, distributc-.d
along the length of the string, as consisting of a serics of impluses
which may be integrated, over time, to find the response to any
particuiar waveform. The total response of the string to these torquing
forces is twofold: First, there is the desired shift in the plane of
string vibration. Secondly, there is « concomitant production of an
elliptical component in the -tring vibration — that is, a beginning of a
component of string motion which is slightly out of its nominal plane of
vibration. If the impulse is applicd when the string is at its center
point of vibration, there will be no clliptical motion produccd and, at

the same time, the tendency to precess the string planc will be ma~imum.

1-2
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On the other hand, an impulse applied when the string is at its max-
imum point of vibration will produce maximum elliptical motion while
producing no rotation of the string plane. Fortunately, as can be seen
in the equations of Section 3, pulsc and analog waveforms exist which
eliminate the average production of elliptical components, while
producing the desired torquing.

Thus, as a matter of interest, we sce that when the actual torque
on the string (about its ncutral axis) is maximum, there is no precessing
whatsocver of the string plane. Contrarily, when the tendency of the
force to precess the string is maximum, there is no actual torque,
as such, gencrated. However the word "torquing'' is used here to
describe this precessing of the STAR Gyro plane without apology,
because it is supposcd that those long familiar with the torquing of more
conventional gyros will tend to use the term, whatever technically more
corrcct term might be applicd. (In the same way, we do not hesitate
to call the vibrating string a ''gyro' or ''gyroscope,’ even though it
may, semantically, not truly be a gyroséope. It functions as a gyro-
scope, and the application of the word seems advisable.)

1.3 TORQUING HISTORY AND THE APPROACH IN THE CURRENT
STUDY

Since the inception of the STAR gyro, it has been recognized that
it would be possible to torque this instrument by the application of
suitable forces perpendicular to the string plane. A static or d-c force
has no precessing cffect on the string because any precessing ctfect
which might occur during onc half of a cycle will be exactly cancelled
out during the succeeding half cycle.v Thus, any force applied to the
string to crcate a torquing effect must vary at string frequency.

Early torquing methods which were considered, included both
what was termed "induction torquing'’ and "direct torquing.' With
induction torquing, a magnetic field perpendicular to the string plane
causcs a voltage to be generated in the string as a result of its motion
in the magnetic field., The result of this voltage is that currcent flows
through an external resistor, and in conjunction with a sccond magnetic
ficld, parallel to the string plane, produces a force in phase with the
velocity of the string — the phase which produces the maximum
torquing e¢ffect, An advantage of induction torquing is that the force
is automatically in proportion to the string amplitude, because of the

1-3
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method of force generation. This method is not suitable for pulse
torquing because of its inherent nature, This torquing must be control-
led by controlling one d-c¢ magnetic field, which eliminates the use of

a permanent magnet. Also, the method is limited as to maximum
torquing rate because of the rather high\resistance of a typical string.
In addition, an undesired damping force is produced incidental to
torquing. ‘

Direct torquing may take a number of forms. Any method by
which force can be applicd to the string in a controlled manner is
suitable for torquing the string gyro. Electromagnetic generation of
this force by use of a steady magnetic field with a controlled current
in the string has becen studied and tested at least twice in the past
(References 3-and 4). Emphasis in the current study has been on the
electrostatic force production. Scction 2 of this report discusses
the reasons for this emphasis.

th 1node torquing, electrostatic

Sections 3, 4, and 5 cover n
force, and general nth mode cquations, developments needed for the
required detailed torquing expression. Key results are noted in the
abstract. These developments are then combined in Section 6 to
obtain a detailed equation for the scale factor or torquing sensitivity
of the STAR Gyro. This expression is derived on an entirely thcoretical
basis and thus is usecful in finding the effect of various terms on
torquing. Itis, of course, obviously useful in finding what voltages will
be required to torque a STAR Gyro of a new design.

With this detailed expression for STAR Gyro torquing, error
expressions are determined in Scction 6.3 simply by the use of a series
of partial derivatives. Those terms in this expression which are
sensitive to temperaturc in a known way are then combined to obtain
an error expression with one temperature term. Thus, ¢rrors which
are correlated through temperature have been grouped together. The
summation of individual uncorrelated error terms is then made on a
root sum squarc basis. A typical error budget for a sample desired
rss accuracy is presented,

In Section 7 considerable detail is given on the laboratory mech-
anization which was used in the tests performed under this contract.
The main object of these tests was not to obtain a particular stated
accuracy but rather to obtain data to verify the theoretical expressions
so that we could apply these expressions with confidence to determine

1-4
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errors, in terms of known errors of standard components, such as the
accuracy with which a d-c bias voltage can be supplied, the accuracy
with which an clectronic gain can be produced, and so forth.

Finally, in Section 8 comparison is made between experimental
and theoretical data. Theoretical torquing scale factor and string-
amplitude pickoff sensitivity are calculated in terms of parameters
used in the test and the results are compared to experimental data for
these. Plots are made to show the effect of shifting the three main
phase angles which are important in pulse torquing. These experimen-
tal phase angles are shifted extensively, with the idea of proving the
general form of the theoretical expressions., These vxpressions may
then be uscd to calculate errors due to a given phase shift with more
accuracy than is presently possible with the experimental setup, or
with the STAR Gyro presently available for test. The effects of tem-
perature variation and of torque pulse magnitudce change are also
compared,
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2. COMPARATIVE STUDY OF ELECTROMAGNETIC
AND ELECTROSTATIC TORQUING

2.1 INTRODUCTION

As evidenced by the contents of this report, primary effort on
this contract was dirccted towards electrostatic torquing of the STAR
Gyro. This preponderance of cffort came about because of a number of
factors. At the contract inception, considerable work had been done
on electromagnetic torquing. The STAR Gyro had been torqued electro-
xnagnetically (References 3 and 4) and the original basic theory on
torquing the vibrating study gyro (Reference 2) had been aimed at electro-
magnetic torquing. Thus, a body of informmation existed on this torquing
method. By comparison, no clectrostatic torquing work had been done.
In fact, some doubt existed as to the feasibility of torquing the STAR
Gyro clectrostatically with reasonable voltage levels., With this in mind,
initial experimental effort was dirccted toward electrostatic torquing
while theoretical effort was aimed at general torquing theory, this

being applicable to either torquing mechanization. FEarly in the contract

period, it became cvident that electrostatic torquing was not only
practical but appeared able to satisfy performance requirements.
Considerations discussed in Scction 2-2 plus the obvious weight and size
reduction led to the carly conclusion that electrostatic torquing is
preferable to electromagnctic torquing.

2.2 CONSIDERATION OF THE TWO TORQUING METHODS

The most important features of electrostatic and electromagnetic
torquing of the vibrating string gyro are discussed below.

2.2.1 Temperature Effects

Perhaps the most questionable characteristic regarding satis-
factory electromagnetic torquing of the STAR Gyro is the heating caused
by the torquing current in the string. Because of the slow dissipation of
heat from the vibrating element, small power inputs causcd by the IR
losses may introduce significant heating of the string. Temperature
variations, as a function of torquing current and thus torquing rate,
are intolerable in available instruments as they cause definite changes
in instrument performance. From data available on one instrument
which has been torqued electromagnetically, a rough calculation as
to probable temperature rise for various torquing rates has beon made.

\
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It is estimated that a torquing rate of 2000 degree ‘per hour would cause a
string temperaturc increasce of 5 F, This estimate assumes no heat
transfcr to the vacuum surrounding the string and is made on an

Invar STAR Gyro operating in the first mode. Although wide fluctuations
could be expected with different instruments, the point to be empha-
sized is that significant temperature rises for rates of 2000 degree per
hour can be expected. To torque at rates this large, it would thus be
necessary to modify the electronics to provide a constant IR power

input to the string regardless of torquing rate. Two methods canbe used
to accomplish this: (1) A dircct current could be provided to the string,
interrupted only by a torquing pulse; if the d-c value is made equal to

the rms current of the pulse, a constant power input is obtained,

(2) the instrument could be consistantly torqued either left or right., A
zero torque rate would call for alternate left and right torquing pulses.
Either of these would hold the temperature of the string stable but the
requircment of a constant power input and associated warmup time for
stabilization would remain as an undesirable fecature. It should be
pointed out that no such difficulty exists for clectrostatic torquing.

Power input to the instrument is insigniﬁcant:

It is appropriate to comment here on the peak torquing limitation
imposed by the IR power loss on electromagnetic torquing. If an
increase in torquing rate of ten (20,000 degree per hour) were desired,
estimation of temperature rise using a calculation of the type discussed
earlier would cause a temperaturc rise of 500 F. This is obviously a
ridiculous figure but it serves to illustrate a very real limitation on
the rates which might be achieved electromagnetically. A similar
increase of ten electrostatically does not introduce unreasonable voltage
requirements and the power requirements remain insignificant.

2.2.2 Physical Instrument Considerations

A considerable reduction in size and weight is obtained by use
of electrostatic torquing over electromagnetic torquing because of the
size and weight of the magnet and magnetic circuit, as well as the
larger casc size required. In addition, design and fabrication of an
instrument incorporating electromagnetic torquing is necessarily more
complicated and expensive. However, no apparent fundamental problems
exist for constructing an instrwment with either torquing capability.

2.2.3 Electronic Considerations

As derived from laboratory work, the circuitry requirements for
cither method of torquing are equivalent (neglecting the constant power
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input requirements discussed in Paragraph 2.2.1). In fact, essentially
the same sect of breadboard electronics was used to torque a STAR Gyro
both ways. Experimental work has shown that current and voltage levels
for either method of torquing are at values easily obtained using mini-
aturized scmiconductor circuits. In both cases, the power required by
the electronics in optimized circuitry would be measured in milliwatts.

Electrostatic torguing requires a prccisién d-c plate excitation
which directly affects the torque sgale factor. Of course, a similiar
scale factor dependance is excrted by the electromagnetic fixed field
(this will b discussed further in Paragraph 2.2.+4). Obtaining d-c¢
excitation with the necessary stability does not appear to be a difficulty.
The disc drive oscillator, nccessary for driving the string into a stable
oscillation, requires plate excitation of comparable magnitude and
stability. Also, whether an instrument be torqued clectrostatically or
electromagnetically, the need for a stable d-c¢ plate excitation in the
torquing channel remains. This will be made more apparant in the
next paragraph.

Consideration of electronic requiréments necessitates some
comment on the complete pickoff torquing transducer configuration.
This is especially true since any electrical cross-talks within the
instrument which will need rejection electronically will be determined
by the chosen configuration. In all practical instruments presently
envisioned as suitable for torquing, the following three basic signal-
transducers are required: (1) A pickoff to sense the angle between the
string vibration plane and a reference plane defined by a null output
from this sensor. This pickoff nicasures the deviation from the angular
reference orginally set up by the instrument. (2) A pickoff which
measures the amplitude of the string vibration and provides a signal
proportional to the amplitude. This signal provides two functions. It
is used as a reference to define instantaneous string position (phasing
information). It also provides a signal from which torquing pulses can
be derived. The pulsce can then be made proportionate to the amplitude
of the string oscillation which correspondingly makes the torquing scale
factor insensitive to string amplitude variation. (3) A torquing pulse
transducer (inverse pickeoff) which accepts a torquing pulse and provides
a proportionate force to act on the string. Having available three
electromagnetic and/or ¢lectrostatic transducers opens up a large
number of combinations for fitting a transducer to a function. However,
some of these can rapidly be discarded.  An lmiportant point must be
made here. Because the string carries any current derived from the
clectromagnetic phenomenon, voltages proportionatal to the reguired
pickoff functions will appear at the same physical point, Thus, any use
ot the magnetic circuit to obtain rnultiple functions will cause direct

2-3
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cross-coupling at the string. Decause of this cross-coupling, use of an
electromnagnetic transducer to provide more than one iunction is
unrealistic, If the rmagnetic circuit were used as both a torquing
transducer and & string plane angle pickoff, common currents with a
ratio of 102 would require separation., This type of rejection is not
particularly practical. It should be noted that assuming reasonable
physical separation of the plates, a similiar cross-coupling docs not
occur in the clectrostatic case, The pickoff is at the plate, not at the
string. With this in nind, it apprvars that only two transducer contig-
urations deserve consideration for use in a practical torquable instru-
ment: (1) An all-electrostatic couliguration with three scts ot plates
to perforin the forementioned functions. (2) A combination which
utilizes eloectromagnetic phenomena for torquing and clectrostatic pick -
olfs for the string plane angle and string oscillation amplitude, It is
almost ironic to note, however, that if an instrument were constructed
with bhoth electromagnetic and electrostatic capability, strong influence
would exist for using the magnetic circuit for the string-planc angle
pickolit rather than for torquing, because of a more satisfactory signal
with respect to signal source impedance, Thus, it turns out that the
probability of cver torquing a STAR Gyro elcc'tromagnetically is less
than the probability of ever constructing a STAR with a2 magnetic tield.

A final minor point should be noted. Whether torquing electro-
statically or electromagnetically a precision d-c plate excitation is
required. The string oscillation amplitude plate {rom: which the torque
pulse is derived always requires it and the torquing transducer may
require it,

.2.2.4 Accuracy

\

To date, no unda nental accuracy advantages of either electro-
static or electro nagnetic torquing have been uncovered. The actual
physical torquing o: the string is a unction o the ‘orce acting on the
string with no direct connection to the mechanis n causing the orce.
Thus. any general theory relating to the response o the vibrating string
gyro in any inode is identically apolicable to either torquing mechani-
zation, Thus, tl:e tact that second-modc operation is being used does
not intluence the choice between electroinagnetic and electrostatic
torquing., Any basic accuracy ditterence then nust relate to the ability
of each method to control the force acting on the STAR Cyro. In the
case of electromoagnetic torquing. the ‘orce is a .unct:on o! the per-
manent :ield and the torquing pulse current. Ilectrostatically the “orce
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clectrostatic field set up by the d-c plate excitation

is a function of the
In both cases the torquing pulses come

and the torquing pulse voltage.
rable circuitry and can be considered equivalent in accu-
racy and controlability.  As far as the respective electromagnetic and
electrostatic fields are concerned, studies indicate that state -of-the-
art technology can provide sufficient linearity and stability for en-

It does appear that a great deal

from compa

visioned requirements in either case.
of care and effort would be needed to obtain an adequately stable elec-

tromagnetic field.

2.3 CONCLUSION

As a result of these investigations and experimental work done
to date, it 1s felt that electrostatic torquing of the STAR Gyro is both
feasible and preferable to electromagnetic torquing. This does not
1at the latter would yield unsatisfactory results, Given two
1s to develop each method to a practical working
However,

say ti
simultaneous progran
both would probably achieve the development geals.

sy stemn,
e instrument less com-

the electrostatic version would be lighter and ti
It should be pointed out that present STAR instrument research

plex.
tic instru-

and anticipated future efforts are toward an all-electrosta

ment.
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3. TORGUING AND LATERAL - FORCE RESPONSE OF THE
VIBRATING = STRING GYRO IN ANY MODE

3.1 SUMMARY

This study is an extension of tnc work on precision torquing
(and general vibrating-string lateral-force response) described in
Reterences 2 and 5.

['he two major areas of extension are (1) the specitic response
for the case of the string in any higher vibration mode, and (2) the
harmonic and subharmonic response of the string to torquing torces.
All information given in References 2 and 5 (some of which is not
repeated here) remains valid for the conditions specified there

The general torquing response, in differential form, for the nth
string mode, is described by Equation 3-14. This expression reduces
to the expression given by Equations 108 and 115 or Equation 130 in
Reference 2, whenn = 1, Also the method of calculating higher-mode
torquing effects by taking the value given by the single-mode equation
on the torqued loop and dividing by the number of loops, is verified by
the 1/n multiplier in Equation 3-14,

It is shown in Paragraphs 3.+ and 3. 3 that atl elliptical,
harmonic, and subharmonic motion of the string can be climinated by
proper choice ot the time function of the torquing pulse. This pulse
shape 1s 4 sine-wuave pulse, at string trequency, in phase with string
velocity, and of s many full cycles in time as the order of the space-
mode vibration. For example, with sccond-mode vibration as in
Figure 3-1, the optimum torquing pulse is as trace () in Figure 3-
Although the above condition is satisfied by any pair of start .nd stop
times which are spaced by the interval specified, the requirement of
least sensitivity to timing evrors is shown in Faragraph 3.7 to govern
the selection of switchinyg phase to be as indicated in Figure 3-2 (start
and stop times at zero values of torquing voltage sand string velocity),
The conditions for no harmonic zeneration are shown to be completely
compatible with the conditions required to obtain minimum error tor
a given puise phasc error.

Error components resulting from reference-signal amplituae
and phase deviation trom desired value, ZCI’\)-CI“)S:;-O(:tcCtor phase
errors, and switching-ditference phase errors are siven in
Paragraph 3. 7.
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Figure 3-1. String Equations, Illustrated for String Vibration
in Second Mode, n = 2

3.2 GENERAL LATERAL-FORCING RESPONSE

" A vibrating strinyg gyro, operating in the nth natural mode, will
have normal transverse vibratory motion, y, of the form,

yix, t) = Yln sin Lll: (x *%‘) sinwt ' (3-1)

where w is the frequency at which the string is vibrating. Figure 3-1

illustrates this motion tor n = 2. 7%

We now assume that a force in the z direction (perpendicular to
the plane of string motiun) is applied to the string. The function

F(x,t), Figure 3-1, represcnts the torce x-distribution and time
variation in a general form.

*In detail, there wiil be remanent higher time harmonics, Y3,
Y5n, etc, but it is shown in Reference 3 that, when operating as a
string gyro near 'critical,’” these bigher harmonics are cssentially
zero, so are not of interest here. The subscript | in Y, 1s carried
in order to be consistent with Reference 3,
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The technique employed here to obtain an expression for the
responsc to this arbitrary input,is ¢ssentially that of the convolution-
although the terminology used is entirely different. The

integral, w
e string to a time impulse is first obtained; then the

response of th
total response is obtained by an integration (the “"convolution'') of the
responses due to all incremental impulses, which impulses comprise
the total finite pulse. The linearity which must be assumed to justify
the validity of the superposition involved in this integral is argued on
the basis of two facts: (1) The amplitude of the z-motion is extremely
small compared to the orthogonal string y-motion, and even smaller
compared to the standing wave length., (2) When the string is operating
the tension in the string is constant to a high degree of

as a gyro,
Hence, the lateral motion of the string

precision (see Reterence 1).
has a highly linear force-deflection characteristic.

First consider the response of the string to a force impulse
which is applied from tp to (tp dty). This impulse on the element
dx has the magnitude F(x,ty) dty dx.  The resulting velocity change
in the z direction may be obtained by equating this impulse to the
momentum change from time ty to ty + dt dz (x, ty) Pa dx,

Fix, tI)
dz (x,tI) = ; dt (3-2)
pa I

The term dz (x, ty) represents the change in z velocity from the time

‘t1 to the time tp * diy, only. It is convenient 10 express this velocity

change as a Fourier series in x over * gr2. %

dr (x,t) = X dZ  sinT— (x ¥ £/2) (3-3)
I - m /
m=1
: 2 12 Fix, ty) dy mn Y
dZm:T 5 a sin 7 (x + %2) dx . (3-4)

L2

#See, for example, Reference 1, Page 35.

#*tWe use the sine series over the interval =
plete Fourier Series which requires the interval 27). See,
example, Reference 7, pp. 236, 237.

(as opposed to the com-
for
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We now make use of the theory of normal modes. The compo-
nents in the series of quation 3-3 are all normal space-modes of
the string. This means that each term in Equation 3-3 represents
a modal shape which, when excited, will vibrate at a single frequency.
(As mentidned above, string tension may be considered constant.)
This frequency is m;, * Thus, the impulse, F(x,tf) dx dtI applied at
t;, specifies the initial condition, dz (x, tl), of a complex string
velocity function, dz (x,t). The mth term of this expansion contributes
a component of velocity to the total motion, which is the value of the
mth term in Equation 3-3, multiplied by a cosine function, which
starts at ty and vibrates at the frequency of that mode, cos
mw(t - ty). Thus, the value Jf dz for atl time after t;] can be written
directly from Equation 3-3 as

a .
dz (x,t) = Zl dzm (x,tl) sin--rz—TT (x + f/2) cos —rr—lf(t - tI)
m faoed

for t = tI (3-5)
This expression gives, for all't > t;, the component of z
resulting from that force, F(x,t) dx, which occurs between t = ty
and ty * dtI. Because the expression is valid for all time after
t = tI, an integration, in real time, t, can now be performed to obtain
an expression for the displacement, rather than velocity,

¢ .
dz (x,t) = f dz (x, t) dt (3-6)
t
I
for) ps
ndém (x’tl) . m 1 . Mmw
Z———-—mn x T 5=)fsin — (t - t.),
m =1 e ﬁ - n !
dz (x, t) =

0, fort <tI

*Reference 1 goes into considerable detail to show that at critical
operation, which is required to obtain satisfactory angular-reference
operation, the tension is constant as mentioned above. That constant
value is not the initial tension, but, as shown in Refcrence 1, is the
tension for which the string is resonant at the drive irequency, w .
Thus, in the lateral (z) direction, the resonant frequencies wiile the
string is "at critical" are the m/n multiples of w and not of w
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expression for force per unit length,

LY T BRI R i = e, T L e e

systems of interest.

F(x, tI) = Fo S(x) T (tI)

‘ This expression, together with Equation 3-4 tfor dZ.,m, gives the change
in z rmotion resulting from the application of the force F(x, tI) dx from
t; to t; + dt;.  Combining Equations 3-4 and 3-7, and performing the

dty integration results in an equation that is rather complex.

fication results from separating the time and space variables in the

Simpli-

(3-8)

This requires that the spatial distribution of the force, S(x), along the
string, 1s the same at all times, a fact which is generally true in

We will assume that S(x) and T{(t1) each have
maximum values of unity. With this substitution, the expression for
dz (assuming that P, a, and m are independent of x) can be reduced to

© ZFOnsin [__r}-— ( x t f)J Mot
_ t ) w
dz (x,t) = Z Pa mwl Sm dTms sin n
m=1
mwt . '
- dT cos , fort >t
mc n I
where
wit
dT = T(t,) cos —2_1 dt
ms I n I
L 4
AT = T(t.) sin 294 at
mc I n I
/12
Sm = / S(x) sin m; (x +-—§—) dx
- {2

(3-9)

(3-10)

(3-11)

(3-12)

The time function has been broken into its sine and cosine

3.3 NORMAL "TORQUING'" RESPONSE

components, although the expression is somewhat more complicated
in this form, because this adapts more directly to the desired results.

The basic y-motion ot the string has been given in Equation 3-1.

This motion is maintained by a parametric drive counsisting of a
longitudinal motion imposed on the string end fastening,

3-6

as described
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in Reference 1. When a torquing force adds a z-motion in

hase with

this y-motion (and at y-motion frequency), the resultant comprises a

new motion of the string in a new plane through the neutral string
axis, at some small angle df from the y axis.

drive maintains this resultant motion.

The basic string

On the other hand, the qua-
drature component of z-motion at string frequency (representing the
ellipticity of string-element motion) and the z-motion components at
all other frequencies are undriven, amd hence are damped out and
decay in time. For this reason, it is the sine term of frequency g
only, in Equation 3-9, which is of interest in the torquing solution.
This term, divided by y in Equation 3-1 gives the net shift in string
plane, df, resulting from the applied force.

dz (x, t)-l . :
_ sin wt component
dd =
y (x,t)

ZFOSn
dp = /% — T (t NS w
) Paw[YI ( I) cos tI dt:I
where

(3-13)

(3-14)

. m o .
Note that the sin [ ‘I}l— (x +L)] and sinwt factors both cancel out when

2
the substitution is made.

This equation is basic to the vibrating string gyro response to a

torquing force or any other lateral force which can be expressed as

in Equation 3-3.

To obtain the response to a finite pulse, Equation 3-14 is simply

integrated,

t.
2F S L2
o n

A =- T (tI) COs wt

- Pa WiY
m

I

dt

I

(3-15)
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The small-angle approximation implied here is not the limitation it
might scem. Individual pulses are typically very small (seconds or
fractions of a second of arc), while the larger angles resulting {rom
longer torquing periods normally involve a follow-up servo which
restores the original orientation between the string and torquing
mechanismni.

Pulses with an infinite variety of space shapes, S(x), as well as
an infinite variety of time shapes T(ty), will operate satisfactorily to
produce torqued steps, Af). The basic requirement is that they be
such that they can be accurately reproduced in the magnitude and
timing required.

It seems logical, then, to look first for shapes that cause the
least disturbance to the string through the other components of dz in

Equation 3-9.

3.4 ELLIPTICAL, HARMONIC AND SUBHARMONIC PRODUCTION

In practice, as well as in theory, non-string-frequency compo-
nents have been found to have either no effect or a second-order, as-
yet-undetected, effect. Elliptical-motion components (at normal string
fréquency) can cause drift in the presence of noncritical operation.
However, because torquing waveforms exist which eliminate these at-
least-unneeded components, without sacrificing other features desired
of the torquing, we now consider the conditions for eliminating the.n
and later consider the torquing response to such pulses which have no
subsidiary effects.

Equations 3-14 and 3-15 are in the most convenient form for
obtaining the normal response of the string to torquing forces. However,
to find the harmonic and elliptical z-motich, produced, incidental to
torquing, we return to Equation 3-9. Performing the dtI integration

i ZFO sin ___lnz (x f—é)]
= - A i1 t
A z(x,t) - o T Sm [ Irns sin
m =] .
-aT cos mwt] , bt
mc 12
(3-16)

3-8
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12 .
2l = ~ had -
A'Ims "l(tI) cos — tI dtI (3-17)
B!
tIZ m
- . ) v
ATmc = T(tI) sin — tI dtI (3-18)
11
L2
s_ = [ S(x) sinm(xw‘%)dx | (3-12)
! _[/2 ! repeated

The expression for Af, Equation 3-15, can also be obtained
from Equations 3-16 and 3-1. Thus the sin wt component of A z(x, t),
Equation 3-16, may be divided by y(x,t), Equation 3-1, to obtain the
same expression for A9 as was obtained in Equation 3-15 by integrating
Equation 3-14. g

An expression for the change in the ellipse thickness ratio,
produced by one full pulse, may be obtained in a manner similar to
that described in the paragraph above for obtaining A #. This ratio
change is the change in the minor-to-major-axis ratio (which ratio we
will call B/A of the ellipse at normal string frequency, w , and is given
by

A(E): Az (x, tﬂcos wt component

A y (x,t) (3-19)
t
Al B 2F S [ 12 .
(—\‘-)— -5;—:"[{:— T (tI) sin -u'tI dtI (3-20)
In Tty

Because this elliptical motion is undriven, it begins to decay immecdi-
ately, so that the expression, to be applicable for all time after ty;,
would be multiplied by the factor v

+
- tn ‘12)
xp g \' /|

3-9
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where Q is the conventional mechanical reasonance tactor. The
elliptical-motion component appears on the main string pickotf signal
as a quadrature signal (at 90-degree phase shift) which is normally
rejected by the demodulator, LYor this discussion, however, we are
mainly interested in the possibility of selecting a torquing pulse

T(tI) which will not produce any ellipticity, while still producing a
relatively large value for &9, Equation 3-15. Considering well-known
orthogonal functions, we see that A(B/A) of Equation 3-20 is zero if
we choose the function

T(t,) = cos wt (3-21)
I I
provided the proper torquing interval is selected. This interval can
be, f[or example - /2 to + /2 for wt;, or any interval of length k(2w)
(for k an integer). I\

We also note that if we include a phase error, 8'1.', in the
expression, lquation 3-21, so that T(ty) = cos (nth + er), then the
desired torqued response, AP, Equation 3-15, is maximized for
8, = 0, the same value of 8. which makes the :;:lliptical component
zero.

3.5 HARMONIC AND SUBHARMONIC ELIMINATION

We now look for torquing functions, F(x, tI), for the interwval tIl
to ty,, which will not generate the unwanted harmonics in Az (x, t),
Equation 3-16. That is to say, we would like to select F(x, tl) angi the
interval ty) to ty, so that all Az terms for which m » n are zero.

3.5.1 Space Function Only

It is possible to accomplish this for all functions, F(tj), by
choosing S(x) to be

sin 2;— (x +—§->,

in which case, from Equation 3-12, Sm = 0 for all values of m = n.

Practically speaking, huowever, it would be extremely inconvenient
to produce a torquing force with this space mode: First, to produce
the sine shape in-space, with harmonics limited to a fairly low level
would be difficult {especially in view or the simultaneous y-motion of
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the string). Secondly, it is highly preferable to introduce torquing
forces at one end only, so as to minimize electrical interference of
the relatively high torquing voltages on the low-signal-level string-
angle and string-reference pickoffs.

3.5.2 Time Function Only

Fortunately, there is a much easier way to substantially eliminate
these unwanted terms. Proper choice of the forcing time function
T(tI) will eliminate all unwanted harmonics in the string response to
the torquing force for all space functions, S(x). Consider the terms
AT, s and ATmC; we look for a pulse shape, T(ty), which will make
these zero except for AT o (the coefficient of sin wthwhich latter
term is required for the precessing eifect, Equation 3-13. This can
be accomplished by choosing

cos wt_, -Y <(wt)<<2nrr -Y )
I
T(t) = ° I ° (3-22)

0, elsewhere

for all values of the arbitrary phase angle Y . The cos wty form
clearly gives the type of orthogonal function we require. The pulse
width of 2n7 (in place of simply 27) is required to obtain an interval
over which cos wty and cos or sin Dln_‘“_tl are orthogonal, even when m

is not an integral multiple of n{(as, m =1, 3, 5... forn=2 —or
m=1, 2, 4, 5, 7... forn = 3, etc).

We note now that Equation 3-22 gives an expression for T(t}) which
also satisfies the requirements tfor eliminating the string-frequency,
ellipse-producing z-motion component, * while at the same time being
at the phase which maximizes the torquing effect. Thus, Eguation
3-22 gives an expression for a highly desirable torquing pulse from
the standpoint of its not introducing extraneous string motion while
producing maximum torque for a sinusoidal-wave type torquing pulse.
The pulse start phase, as determined by Yy o is free for later choice. **

*See Equation 3-21 and the statement concerning pulse interval which
follows that equation.

*kCombination cases also exist for eliminating harmonics, where
requirements, though less stringent, are placed on both 5(x) and
T(ty). The unly ones of this type known require torce on all string
loops and are hence of no more practical value than the "Space

Function Only"" method described above. .
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In summary, if a string gyrois torque:i with a sinusoidal force |
at string {requency ard in phase with string velocity and of a duration
equal to n full cycles (where n is the mode of string vibration), then
neither elliptical motion nor harmonic (including sub- and fractional-
harmonic) motion is generated incidental to the torquing, no matter
what space distribution is used for the force.

As an example, with the string in the second mode, n = 2, as
pictured in Figure 3-1, a double-sine-wave torquing pulse should be
chosen, trace (c¢), Figure 3-2, in order to prevent the torquing pulse
from producing any unwanted string-motion harmonics. Note that by
using this pulse, all harmonics are cancelled vut, tor any space
forcing function, S(x), Equation 3-8.

3.6 HARMONIC GENERATION BY A SINGLE-SINE-WAVE PULSE—
_ SECOND MODE

Because testing has been done using the single-sine-wave torquing
pulse (Figure 3-3) with the string operating in its second wmode, it is
desirable to ask what harmonics this produces. For this pulse, with
n=2, we define the single-sine-pulse value of T(tI) as

-Y P oo Y
cos th, IS (th) < {2 o).
Tssp(tl) )

0, elsewhere (3-23)

which differs from Equation 3-22 only in that 27 replaces 2 n 7 in the
limits. Combining this pulse with Equations 3-17 and 3-18, we obtain

for the coefficients in Equation 3-16,

i 0, for m even and #2 ]
T_, for m = 2 (the desired torquing effect)
w
AT = ) sin (3,—‘—1)\ ] sin (3+1)y ] ,L(3-24)
ms 2 2 o) . 2 o
w m - 2 m t 2
L for m odd J
0, for m even
m m
: 2oy ] iz )] b
ATmC 2 cos[ ( 3 ) n] ) cos [__2 1 o] (3-25)
~ m - 2 m r 2

for m odd
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Figure 3-3. The Single-Sine-Wave Pulse, Tssp (t.)

I
A value for Y, can be chosen to eliminate either AT, g or AT .,
but there is no way of eliminating both. For the purpose of minimizing
the effect of timing errors in the pulse-generating circuitry, it is
desirable to switch at times when the eifect of the actual value of the
pulse is minimum. The optimum switching time can be seen in
Equation 3-14 to be when cos th = 0, or when Yo is - T/ 2. This is
the value of Y, being used, as depicted in Figure 3-3. With this
selection for Y Equations 3-24 and 3-25 become

rO, for m even and = 2 )

L, for m = 2 (the desired torquing effect)
AT = 3 b (3-26)

ms
mmn mrm
cOs > cOs

Lm—Z T Tm T2

, for m odd

0, for m even

mr

mT
AT = sin sin —— (3-27)
me TZI ': ,2 - , 4 ] , for m odd
- 2 m T 2



e T T

C5-1277/32

Actually, the maynitude of interest is the vector sum,

. 2 f
AT =+ |ar + AT 2| U2 (3-28)
m ns mc

which can be shown to be

( 0, m even
ha m = 2 the angle, .
w ATZC
AT = arctan (“—'—*> =0 > (3-29)
m AT
: 2s
2 1 1
o nl—&-m+2 » ™ odd
L J

Thus, we see that, with second-mode string vperation, the 1/2,
1-1/2, 2-1/2, 3-1/2, etc, harmonics of the string frequency (w) are
excited by a single-wave torquing pulse, as opposed to the double-
wave pulse, which, as mentioned, ¢xcites no harmonics. For example,
compared to the precessing term ATZS, which in this case is

These terms decay and certainly do not show any first-order effect
on the torqued string gyro.

*Using suitable identities, Equation 3-16 can be rewritten in terms of

ATm, as just delined, to give
© 2F sin [%l(x ’rg)] AT
c
Az(x,t) = 2 S AT  sin (mot - arctan th )
m m AT
m=1 Pa mwl’ ms
3-14




C5-1277/32

3.7 PULSE-INTERVAL AND PHASE TORQUING ERRORS
(INDEPENDENT OF ANY HARMONICS GENERATED)

We now examine the torquing response of a time wave, T(fI) of
the sinusoidal form just discussed. In a given instrumentation, there
will be deviations from the ideal wave. The timing errors result from
three main sources in the circuitry. These are (1) phase shift of the
entire string reference signal, (2) phase error in the zero-cross
detector, and (3) phase errors due to switching time.

In Figure 3-4 the torquing signal is depicted with significant
phase terms. The angle, 8., is the shitt in phase of the string
reference siynal. In all mechanizations vtsualized to date, switching
is controlled by a zero-cross detector which operates on the actual
string reference signal so that a shift in string-reference-signal
p‘hase causes the switching time phase to shift with it. Thus, 8y ac}ds
to the switching-time phase, as seen in Fjigure 3-4.

The next component of switching phase is 04,, the average
switching-time phase shift. In practice, this phase will result mainly
from errors in the zero-cross detector which determines both turn-on
and turn-off time. Thus a phase shift in the pulse supplied by the
zero-cross detector will shift the turn-on and turn-off times equally.
(The use of only full-cycle torquing waves (no half-cycle waves) avoids
possible differences between plus-going and minus-going zero-cross
detectors. )

In addition to the average switching-time phase, there will be a
difference term, 85, which adds to the turn-on phase, while subtracting
from the turn-off phase. It is this component that changes the total
length of the pulse from an even multiple of 27, to 2 k7~ 284, as

indicated in Figure 3-4.

In any case, three phase terms are required to define the pulse,
time-wise. The particular definitions picked here were chosen to be
as consistent as possible with a typical mechanization. For example,
it is convenient to think of one changing while the others remain
constant. It also turns out that, with these definitions, the expvression
for the torquing response turns out in a convenient form.
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STRING DISPLACEMENT |

4

v

( »-
T(t;) ANI -v—i
T
k 7- Zed

7
/7
/
Y
L L
l l = 84
0, ®sa
ft——— a7/ 2 2k m~ :2"’ / [
8 - REPERENCE WAVE PHASE SHIFT

654 = AVERAGE SWITCHING TIME PHASE SHIFT
84 = DIFFERENCE MODE OF SWITCHING TIME PHASE SHIFT

Figure 3-4. Phase
Time and Torqguing-Wave Phases. YHarmonics are

Eliminated if k = n,
Restricted to k = n.)

Angles Qr ,

S

sa’ and Gd, Defining Switching-

but This Development not



C5-1277/32

To obtain the total torquing response to the wave form of

Figure 3-4, we integrate Equation 3-14 over the limits defined in
Figure 3-4.

-1'—+zkv+er+e -9

2 sa d
2 FOSn w
A s=—m—————— - -
) oa wZYI cos (th 91_) cos ,th (lltI {3-30)
\
™
-— + +
2 er esa ed

w

This rather imposing-looking integral works out to a rather
convenient form.

4]
d 1
p—g - —— + 1
AP =K [cos Gr 5 cos Gr > Sin ZGd cos (Gr + Zosa)]

(3-31)
where
2kmw FOS
R (3-32)
Paw lYl

and Sn is as given in Equation 3-14.

To this point, no small-angle approximations have been made.
We would like to maintain the primary torquing term K cos 8. and at
the same time be as insensitive to individual changes in other phase
shifts as possible. The term 84 (which is half the deviation from a
full-cycle pulse) is particularly troublesome in this regard, but we
notice that it is possible to arrange to have the 84 and sin 283 terms
cancel. First, assume that 84 is small so sin ZQd—» ZGd. Then,

¢]
d
AP =K lcos8 + — [cos (8 +28 )-cos 8 (3-33)
r k™ r sa T
2 3 .
- — + <
Fee Gd cos (8r zesa) , for Od < 1
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In this form we see clearly that by picking 8, and 855 both to be
approximately zero, the two cosine terms in the brackets nearly
cancel, and leave A9 with but small sensitivity to ed.

Thus we wish 8, 84, and esa all to be near zero. Allowing for
slight deviations only, we may expand to obtain

1 2 2

1 2
AP = K{ 1 -—Z—Gr ) esa(erfesa) *-3-ed (3-34)

“k= d

for 8., 8 and 8 all << 1
d r S

a

Equation 3-34, together with other defining equations in previous
sections gives the respense to a torquing pulse with time shape as
defined in Figure 3-4. Note that the condition for least sensitivity of
torquing response to switching-time phase shiits (the condition 8, = 0)
is also the condition for no elliptical motion, as derived earlier. This
is not surprising, upon examining the differential expressions,
Equations 3-14 and 3-20. ‘ .

Also, we would normally expect to pick k = n to eliminate all
harmonic z-motion excitation. Note that it is possible to select k = n
without having any adverse effect on the rejection of torquing errors
due to torque-pulse phasing deviations, so that optimum pulse shape
for both harmonic rejection and minimum sensitivity to phase errors
can be realized simultaneously.

3.8 CONCLUSION

It has been shown that, by properly choosinyg the time-form of
the torquing tforce, it is possible to "'torque’ a string gyro without
inducing any subsidiary harmonic, sub-harmonics, or elliptical-
component motion, and that this can be accomplished with complete
independence ui the choice of the space distribution of the force, and
without adding any ditficulty to the pulse-generating circuitry. Further,
an optimurn pulse shape reguired to obtain ieast torquing-scale-factor
error resulting from residual torque-pulse phasing errors, has been
found, and shown to be completely compatible with pulse choice tor no
harmonic gencration. Thus, no compromise between these objectives
is necessary.

3-18
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4. ELECTROSTATIC FORCE ON A FIBRE BETWEEN
- TWO PLATES

This section presents a derivation of the expression for the
electrostatic force exerted on a cylindrical bar or string when it is
parallel to and between two parallel plates, as depicted in Figure 4-1,
The string or fibre and both plates may all three be at different
voltages. Although the problem may not appear difficult (the force
between a cylinder and a single plate, for example, is well known;
see Reference 8), the solution required more effort than had been
anticipated and it seems worth presenting in som'e detail.

Paragraph 4. 1 contains the complete derivation of the force
expression in terms of the geometry plus the capacity, C,,. Cy repre-
sents the capacity between the wire, or cylinder, and the parallelled
set of plates. Because the derivation for Cw is rather lengthy, itis
set apart in Paragraph 4.2. Finally, in Paragraphs 4.3, 4.4, and 4.5

Figure 4-1. Cylindrical Fibre and Electrostatic Plates




TS S AP = 1 e e et

C5-1277/32

the results are examined. For example, special cases are compared
to exact solutions for an indication of accuracy; optimum conditions
for maximum f{orce are examined; the amount by which the force on a
fibre can be increased by using two plates, instead of one, is analysed.

4.1 FORCE EQUATION

The basic method used here, for finding the force is to obtain an
expression tor the stored energy in the system and differentiate this
with respect to displacement in the direction of the required force.

To write an expression [or the energy, we first obtain the values of the
six equivalent capacitors shown in Figure 4-2. These include three
capacities directly to ¢ground which would normally be referred to as

stray'' capacities. The other three are those which interconnect the

three electrodes.

We may intuitively fcel that the voltage differences, (Vg - V4)
and (Vf - Va), are sufficient to express the forces, the absolute level

\
* //—'\\
C
1
,’ B
/ \
-.LC \ JVB
T “~¢B |
=gk~ L
Pre £ £ T CaB
|
/ \% L |
/ £ T %
\ Y
I \ | fA
| \ | |
| v A
L c. K
- X : C_=C,, +C
= Note: C o =Cia ¥ “ip

Figure 4-2. Capacity Model-Three Stray Capacitors to Ground and
Three Interelectrode Capacities
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of voltage not being important. We can verify this intuition by first
writing the charge-versus-voltage matrix in the form

Qu CatCap™ Cia ~CaB “Cia Va
- - + + - -
Qp CaB Cg T Can’ Cip Ctn Vg
- - + +
Q Cea CB CeTCea Sl | Vs
(4-1)

The elements of the square matrix have been written in relation
to the capacitors of Figure 4-2, by inspection, by considering, for
example, that the first term in Q4 is the charge at A when Vg and Vg
are both 0, and so forth for other terms. * Note the negative values
when the charge component under consideration is on a grounded
element.

We shall assume that the plates and cylindrical fibre (of length L)
are of sufficient length that end effects may be neglected and the
problem is reduced to a two-dimensional problem. 1If we further
assume that the plates A and B are very wide, then the fibre {f will be
shielded from ground by these plates and Cy is essentially zero. If we
also neglect the "'stray' capacities to ground Cpand Cpg, *¥* then Cp,

Cp and Cg may all be considered to be zero. In this case we expect

*Equation 4-1 can be checked by writing Qp = Va CA t(Vp - Vi) Cia
+ (VA - VB) CAB’ etc. \

**The expressions found in the literature tor the force between two
parallel plates and tor the force between a wire and plate customarily
tacitly neglect the effect of "stray'' capacity from the elements to
ground. Thus if the standard expression for the force between paral-
lel plates is applied to a case where there is a high common-mode
voltage [in extreme, for example, the voltages on the two plates
could be, say 10° and (lO6 + 1) volts] , the calculated torce could be
incorrect, even in direction, because the standard expressicon depends
only on the square of the voltage difference. With high common-mode
voltage, thin plates, etc., the stray capacity to ground could be suffi-
cient to allow the charge to be the same on both plates, resulting in a
net repulsive, not attractive, force. Neglecting CAand CB here is
the same type of assumption as this. Only in a rather extreme case
would there be sufficiently high capacity (here, or in the other ex-
pressions mentioned) to ground and common-mode voltage for this
effect to affect the results,
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. that the resulting expressions will turn out to be independent of the
common voltage level; therefore, let us define the relative voltages

Vs - vf ) VA
(4-2)
V = -
P VB vA
The problem, stated in these terms, appears in Figure 4-3,

Making the above substitutions in Equation 4-1, we obtain

Q4 Cap " Ca “Can “Ca Va
= -C + - + -
Qp Cap Cast Cip Cip Vot Va (4-3)
- - +
2 Cia Cip Cia T CiB Ve " VA

.
. .

Using the notation change Qs =Q and Q = QB’ this reduces to
P

f
Qa 0 “Can “Cia Va
( Qp =10 C,5*"Cp ' -Ciy Vp - (4-4)
Q 0 “Cin Cia T Cp Vs

FRE

Q = Qf
5

V (RELATIVE TO PLATE A)
3

L = LENGTH INTO PAPER

1< C

H  CONSTANT,

’/\ AREA A (EACH PLATE)

N N (\;OLI’:\GE ON PLATE A, RELATIVE

R
\%&\\\\\\\k\\\ AN NN NN 26 T rSELE. 18 ERO)

Figure 4-3. Relative Voltage Picture and Dimensions, C, is Capacity
. From Cylinder to Both Plates Paralleled

-
;
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Thus, as expected, it turns out that all charges are independent of the
common voltage level V,. An expression for Qp is not needed because
it is simply -(Qg + Qg). We thus can express the entire charge-
voltage picture by the expression

Q C _+C._ -C v
AB B B
Pl = | ¢ P (4-5)

- +
Q C C CfB \Y%

s fB fA s

While using this expression we may think of V, as being grounded,
with V and V, being the voltages on the string and on the ungrounded
plate. At the end of the solution, however, it will be convenient to
to return and express the final force in terms of all three voltages.

All of which must seem a rather devious method of demonstrating
what must, at least by now, seem obvious to the reader. We have
merely shown that a 2 x 2 matrix is sufficient to express the
electrostatic energy picture, and that the condition for this simplifi-
cation is that C., C4, and Cp all are negligible. While there may be
"'stray'' capacities, CA and CB, the ""stray"
'infinite-plate'' case, is

some small value of the
capacity C; is far less, and in fact, in the
identically zero.

t

It, was originally thought that, by using an infinite series of line
ima ges, it would be possible to obtain the entire voltage-charge picture
on the three electrodes directly. It was discovered, however, that
this is not practical. The infinite series of line charge images proved
only suitable for determining C,,, the capacity between the cylindrical

wire, and the pair of plates connected in parallel (Figure 4-4).

The following three assumptions are important in relating the
three elements of the capacity matrix, Equation 4-5, to the geometry
involved. ‘

\

A. Because the fibre is parallel to the plates, and if the fibre
diameter is small compared to the plate gap, then the fibre
lies in a plane which would be an equipotential plane in the
absence of the fibre. In this case, with Qg = 0 (that is, with
the string electricaily ""floating, ""i. e., with no initial charge,
and not connected to any voltage source which could conduct
any charge to it), the capacity between plates A and B is
unaffected by the presence of the fibre; this is because the



C5-12717/32

tibre simply assumes the potential which would be in that
plane in its absence, and thus has no effect on the field or
inter-plate capacity. Thus we write (the terms being
defined in Figure 4-3)

ForQ =0
s
(4-6)
_ 2H
Vp- €A Qp

for any consistent set of units. The practical question is:

how accurate is the small-diameter solution for larger
diameters? This is considered in Paragraph 4. 3 by comparison
to exact solutions in known special cases, The results prove

to be surprisingly good at values of rO/H as high as _1/3

to 1/2.

N Nk

+ a C > é’( ‘ro \
W

2 \ 2
L/€A 1l-a c
: 1 2H 4 w
] Y=aH |
|
Y l

~L
2 Cw> T /
/

/ pd {
\W\\\E\\ ®\\<\\§\\N\\@\W\ TN

Figure 4-4. Interelectrode Capacity in Terms of Geometry. C  is

7
/

AREA A

Capacity from Cylinder to Both Plates Paralleled
(See Figure 4-2 and Equations 4-12, 4-14, and 4-15.)

4-6
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B. The second assumption is essenti’ally a restatement of a
portion of A, now put in equation form. For Qg = 0, the
fibre takes on the potential which would obtain in its plane,

were it not present. Thus we write

Ht+tY

= 0, =
for QS Vs SH Vp
- 1] + o
= > Vp
where we have defined
a = X.
H
C. Finally we state
for V. = 0 Q = CV
P s w S

(4-7)

(4-8)

(4-9)

(4-10)

This is not really an assumption, other than in assuming

that Cw is a value which we can obtain. Because of the

complexity in solving for C_, that exercise is deferred for

Paragraph 4. 2.
Using, first, assumption C, with Equation 4-5 for Qs

Q = (C

+ 3 =
S A CfB) Vs for Vp 0

+ =
(CfA C..) C

B w

Now, using assumption B, and Equations 4-5 and 4-12

= - + +
0 CfB Vp (cfA CfB) Vs
C = C ] ta

iB w 2

(4-11)

.(4-12)

(4-13)

(4-14)

Finally, using assumption A, we combine Equations 4-5, 4-12
and 4-14 with Q = 0. Then, ecliminating Vs and substituting Vp irom

8 .
Equation 4-6, we obtain

2
€A ] +o )
+ = == 4
CAB CfB 2H CW ( 2

(4-15)
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Thus the entire charge picture can now be written, substituting
Equations 4-12, 4-14, and 4-15 in 4-5, as

2
cA | 1 +a 1 + o
Qp 2H Cw 2 Cw 2 Vp
= , (4-16)
I +o
Q -C C v
s W 2 w s

With reference to Figure 4-2, Lquatwns 4-12, 4-14 and 4-15 may

also be solved tor C AR LrB and C Thus all the individual capacities

(exciuding "strays') are known in ternxs of C and the geometry. They
W
are shown in Figure 4-4.

The stored electrostatic energy in the system may now be written
as the sum of the energy in the thrde capacitors of Figure 4-4, or,
equivalently, from Equation 4-16 (using Equation 3, rage 39, of
Smythe, Reference 3), ’

2
1 (€A (1 +ao ) 2 1 2
= = + v +=C V
v 2 (ZH 4 CW) p 2 w s
1 +a (4-17)
- C vV V
w 2 P s

This expression becomes very complex and unwieldy when
differentiated to obtain the force. Manageable expressions were not
obtained until the tollowing substitution occurred to the writer: From

assurnptiou B, we know that charge on the string, Q becomes zero

s’
when V = (1 + « )V Force on the string must theretore also be
Zero ior this value of '\ s~ -hence it may be guessed that the expression
for force mig¢ght be almghilcd by writing the expressions in terms o1

the deviation of V_ from > (1 + « ) Vp' Thus, we define this deviation,

S
1 1
;o= g + o T = (V. -V )-= (] +o0 V-V
v Ve -3 )\p (Ve RAEE ) (Vg Al
(4-18)
Upon substituting this in Equation 4-17,
:lh\’vZ%flC v2 (4-19)

2 2H P 2 w s

which proves considerably more manageable.
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From Smythe (Reference 8, page 40), the electrostatic force
tending to increase a displacement-variable, Ny is

ouU(V
F '__Tf(—_l \ (4-20)
9 s QQ's constant
+§E_L91 (4-21).
9MNs V's constant

where U(Q) and U(V) represent the stored electrostatic energy in terms
of charge and voltage, respectively.* The electrostatic force in the
+ Y or + @ direction is therefore, using Equation 4-21, 4-19, and 4-18

ou

F (o H) |V constant
(4-22)
1 3¢ 2
w
F = — -
2H] 5« Vs Cw Vs Vp

Regarding units, F and C are both total values, or both on a
per unit length basis. The force solution is now complete except for

obtaining expressions for C _and 9C /3o
w w

4.2 WIRE - TO - PARALLEL - PLATE CAPACITY

Expressions for CW and acw/d o are obtained below. In Figure
4-5, the pertinent dimension and the location of the lumped-parameter
equivalent of CW are shown. Figure 4-6 shows the cross-section of the
central portion of an infinite set of line charges of values ¥q and-q
(charge per unit length). Without going into the rather devious trial
and error process which motivated the selection of this array, we can
verify that they comprise a set of images which gives the desired set
of surfaces of constant potential.

First: Surfaces A and B are both at zero potential, because, for
any point on either surface the tq's and -q's are symmetrically
arrayed. Thus, at any point, the component of potential caused by each
tq is exactly cancelled by a corresponding line charge of -q.

*The change of sign involves the fact that, tor a given movement, d7 s’
the energy in terms of voltage is not constant, but changes due to
to currents which flow from the source maintaining these veltages.
While Equation 4-20 is rather 'obvious, ' kquation 4=£1 is not nearly
so obvious.

4-9
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Figure 4-5. Illustration of CW, a Function of H,a , T L. and ¢

Second: With the assumption that r . H, it is valid to assume

that at radius r there lies a small equipotential cylinder which is
substantially circular and concentric with the central charge. For

ry, « Hit may also be assumed that the distance from any element of
this substantially-circular cylinder to all line charges (except the
central one) is approximately equal to the center-to~-center distances
(2H + 2Y, etc., Ficure 4-6).% The use of center-to-center distances
as an approximation allows 1or partial cancellation of errors on
opposing sides of the cylinder. That the accuracy of the results under

*That the small equipotential cylinder is not exactly circular can be

seen trom the tact that it is 4 member of a sct of cylindrical (non-
circular) equipotentials, the outermos¥ o1 which are squeezed between
the plates A and B on the sides, yet extend to infinity above and below.
The innermost of the set become more and more circular as they
approach the central iine charge. l.ack of exact concentricity (except
for Y = 0, an important special case) can be seen by comparing the
special case of one plate removed (Hand Y—+» as H - Y= h-=
constant), to the exact solution for that case, Reference 8, where
such non-concentricity is observed.
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these assumptions is quite good, is indicated in Paragraph 4.3, where
special cases are compared to known exact solutions. In particular,
good correspondence is obtained with values of rO/H as large as 1/3

to 1/2.

The field potential, V, a distan®e r from a line charge of value
+q (charge per unit length), is given in Smythe (see Reference 3,

page 63) as

v

-

9
2T e

Inr + C

(4-23)

Starting with some point on f, thus, the potential component, due

to the central charge, is - (q/2 7 ¢)
the nearest charge on the right is + (q/2<¢) 1n (2H - 2Y) + C; due to
the nearest charge on the left, (g/27¢) In(2H + 2Y) + C; due to the

4-11

Inr, - C. The potential due to
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next charge on‘the right - (q/27¢) In 4H + C; etc. Combining these
components in groups of four, we obt%\in

- + - . +
v = _4 [IHZH 2Y 2H+t2Y | 6H-2Y 6H*2Y

4H 4H 3H
o

(4-24)
t+ 1

n 10H - 2Y 10H+2Y+
8H 12H C

The grouping used, which resulted in a solution in the most
convenient form, is depicted in Figure 4-7.

Using o = Y/H (Equation 4-9), Equation 4-24, after some manipulation,
becomes 7
: 2 2 - 2
. g H o2, (2n + 1) - Sl
VoS InT (L-0o7) Z_ T nz-1 | " ent1)2
o n =1 L
@ 2 B (4"(.5)
- q H 2 . 1l -a
e hr o) *Zn 2 [1 " dn(n t 1) (4-26)

Testing for convergence, the ''ratio test' fails to indicate whether
the series is convergent or divergent (A / A —=1). Raabe's Test as
5 = ntl n
given in Reference 7 shows convergerice, as does the integral test.

2y

obl + 2Y
ol - 2Y
10H - 2Y
12H

14H - 2Y

2H + 2Y
o
ZH - 2Y
4H

124
10H
“H
41
8H

O,
©
-
T
-
-
K

©
9

©
2
2
L

=

———
7 o
e
s

.
Figure 4-7. Grouping of Charges in the Individual Ternis in Equations
(4-26) and (4-24), and Distances to Central Charge. Subscripts of A
Correspond to n's in Equation (4-25), etc.

4-12
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Because the plates A and B (Figure 4-6) are at zero potential,
the desired capacity from the wire to both plates is

- Q . gL
C. = v 5 (4-27)
, _
c = erm e L (4-28)
w H 2 1- a?
In |Z (1-a 9| ¢+ s
r 4
O
where

s = —2 In |1+ \2=2 (4-29)
T s n ——————— -
2 Z 4n(n + 1)
1 -«
n=1 :

The definition of S anticipates a simplified expression ior S, which
can be obtained by first expanding the log in a series. This permits the
summation over n tobe madeonce and for all, leaving only a series in

a, the variable. Using the conventional expansion
2
5 = = -0 _1_ 1 - (12
Z 4n(n + 1) 2 4n{n + 1)
) 1 1 -az ’
+ - | F e v v e e 4.
3 [4n(n + l)] ' . (4-30)
If we now regroup these, collecting powers of (1 - a ),
@® oo}
- 1 2 2
S = § :n(n 1) “(L-07) E : [4n(n+ l)]z
n=1 n=1

2 =
2 4

+{(l -2 )
nzzl 3[ 4n(n + 1)]3

I e
t (l-a ) —t
! ZE}n(nrl)]{}
n = !

(4-31)
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The summations over n can-be put in closed form (see Reference
9, page 336); for example the first two summations in S are 1.0
(exactly) and ( = ¢ . 9)/24. At higher values of n, the closed torm
becomes more difficult to evaluate, and the series expression converges
more rapidly, hence use of the closed form is not practical above the
first or second term. The resultant expression for Sis

\ 2
S = 1-.036233(1 - o %) +.002712(1 - a%)
3 4
- .000248(1 - & %) +.000024(1 - a %) (4-32)

The derivative required for Equation 4-22 can be obtained, directly,
in the form

3C «C ’
W W 4 "
= 5 [ &r S]
3 @ H 2 . 1- o 1- a
=(1 - +
z[m ;r(l o )§ 3 s] (1-33)
o
where S* = - _E%—a(—l&— [(1 - az) S] is given by
2 2 -
S% = ] -.072466(1 - o )+ .008136(1 - o )
» 3 > 4
- .000992(1 - o ")+ .000120(! - « )
L (4-34)

The final result is contained in Equations 4-22, 4-28, 4-32, 4-33,
and 4-34. Simplification is not possible after these equations are
combined into one expression; hence, as an alternative, the results and
definitions are summarized in Figure 4.3. The definitions for the
infinite series S and 5% have been chosen so that they are approxi-
mately unity.
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: . i) FIBRE LENGTH (INTO PAPER) = L
y OTI a =Y/H (4-9)
. | e a (4-2)
H F = - *=
. | Vp Vg - Va
: v, =V - (1/2)(1 + a) vy (4-18)
l F = ELECTROSTATIC FORCE ON THE FIBRE
S b b = H-Y (OR CYLINDER) IN DIREC TION SHOWN.
Hakia il
1 [,
S|l w 2 4.2
F =5 52 s C, v vp ( 2_)
WHERE
Cw - 2rel .
In {_H. 0 _az)l Jl-a o (4-28)
T 4
° : r
c aC
—_—w w 4
da - > 218
z[xn[ﬁ a-a3)l,Ll-@ S] l1-a (4-33)
r 4
o
2 22
S=1-0.03623(1 -a")+ 0.00271 (1 - a")
(4-32)
23 22
- 0.00025(1 -a“) +0.00002 (1 ~a") +. ..
2
S% = 1 - 0.07247 (1 - &%) + 0,00814 (1 - o)
. (4-34)

3 24
+0.00012(1 - ) +. ..

2
4

- 0.00099(1 -a )

S(0) = 0.9662

S#(0) = 0.9348

Figure 4-8. Summary--General Equation for Force. Equations 4-22,
4-28, 4-33, 4-32, 4-34 as well as 4-9, 4-2 and 4-18

_
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‘ 4,3 SPECIAL CASE, ONE PLATE

An indication of the accuracy of the result can be obtained by
comparing the single-plate special case with known exact solutions.
To do this, let H and Y —e o while\holding constant the distance from

plate B to the fibre,

h=H-Y

= H(l - o)
_ h
«= 1 -7

Thus, with VA =0, as H e—e v, 0 —» 1, | -« and
] -02 —+ 0, S —=1, S*—=1, and

2 h?
1 - = - c—
H( a )= 2h T

—2h
Thus

one

C -
W-IH-'> © ln%— plate

By comparison, the exact solution for one plate only is
(Reference 8),

c = Zrle L -
x -
cosh (———-—>
r
o)
> e Ll exact,
= — one
h r 2 plate
In {— |1+ ] - | -2
r n
o

4-16

(4-35)
(4-36)

(4-37)

(4-38)

(4-39)

(4-40)

(4-41)
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The term in brackets, for rg<< h is approximately 2, as in
Eqguation 4-39. Even tor h/r, as small as 20, Equation 4-39 gives a
value for C which is only 5% lower than the exact solution! This is
surprisingly good, especially considering the fact that this is the
worst case from the standpoint of cancellation of errors, as discussed
before Equation 4-23. We obtain the force, as plate A moves to o,
by letting H — o, Then, :

C r
W 0,
and
] 1
H(l1 - c2) —™ 2h
aC
1 w 2
F = — . -
2H 98 « Vs (4-42)
™ € L 2 ’
= N2 (V- VB) one (4-43)
h In— plate
T
o

\
compared to the exact value, obtained from Equation 4-40,

e L 2
= V =V -
¥ 27 1/2 (V= Vgl (4-44)
rO . h 2
h 1 - (T) cosh <;—‘)
o
. exact
one plate

Here, for h = 3r, the approximation is 9 percent low (about
4-1/2 percent at h =.4r,, and 22 percent at h = 2r). It is felt that
the approximations made in the solution are shown up especially
strongly in this highly unbalanced case, so that the errors under other
circumstances may well be bounded by these values, in which case
the solution, as summarized in Figure 4-8, is believed to be valid for
H/rO as low as 4, that is, the fibre diameter as large as 1/4 of the
entire plate-to-plate gap (more or less depending on accuracy
required).
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4.4 PLOTS FOR (H/rgs) = 10

The capacity and torce, for a fibre between two plates, are
plotted vs o in Figures 4-9 and 4-10 for H/ro = 10 and (force curve
only) for Vg from + V Jto -Vp. The curves are more or less self-
explanatory. The ordlinate units are picofarads/inch and pounds/voltZ,

The two-plate capacity equation reaches about 2upf/inch at
a = 0.9. At this point the electrodes touch and the capacity actually
approaches »n. For o between 0.7 and 0.9 the single-plate exact
solution is a better approximation for the two-plate capacity. The
correct value tends to tollow the upper of the two curves with some
smoothing around « < 0.7, where they cross.

Expressing the force curves in terms of the difference voltages
Vp and Vg reduces the parameters needed for the plot to one, Vg/ V.
The "exact torce for no left plate'” (A), by comparison to the Vg = OVp
curve, shows the effect of the presence or absence of plate A, when
it is at fibre voltage. For o > 0.7 these two curves cross, showing that
the two-plate solution is beyond its range of accuracy. At these values
of a (between about 0.7 and 0.9) the exact single-plate solution is the
better approximation.

4.5 SPECIAL CASE, STRING CENTERED

4. 5.1 Reduced Equation

A special case of interest is the force on the string when the
string is centered, thatis, when a = Y/H = 0. Considerable simplifi-
cation is possible in this case. To begin with, 9 Cy./9 a becomes
zero, as is expected from symmetry. The force then reduces to

F==e—7Tv V (4-45)

2 T eLl
= T (4-46)
In— 0.2415%0
r
Q
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_.F , LBS
v ik vour 2
P i
I3
7 X 10'lz
6
V =1.0V
. s p
+ vV =09V
s p
3

roo- _ Vv
A p VB VA B
V =V, - O

s f VA
H 10
T

o]

Vg = 0, EXACT VALUE

FOR NO LEFT PLATE

V =0.75V
s P

V =05V
S

-10x 10748

Figure 4-10.

. H )
Force on Cylinder for — = 10, vs a at Various VS/V
r

P
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c = 2m <L . (4-47
WO 111(1.273H/r0) -47)

A useful form may be obtained by substituting for vg and V'p in
Equation 4-45. With some manipulation, the following somewhat

surprising result is obtained.

Cwo 2 2
F = I:(Vf - VB) - (Vf - VA) ] (‘%-48)

4H

This equation has the same form as the expression for the
difference between the forces (Figure 4-11) to each plate individually,
each in the absence of the other plate, that is K* in Figure 4-12.
From Equations 4-44 or 4-41, we may obtain the exact solutions for

F. and FZ (Figure 4-12),

1
L e 2
FI—K (Vf-VA) L/H
(4-49)
L% 2
FZ K (Vf VB) L/H
where
m €
K* = — (4-50)

The difference, Fp - ¥, having the same form as F, can be
plotted in Figure 4-12 to the same ordinate as F,

) 2 L |
l‘orce/{‘:(vf - VB) - (Vf - VA)Z:I ﬁ} s

the symbols K* and F* being used for this ratio. Units are lbs/volt.2
©Fx - Cwo _ T
4L 2 In 1.273H
o
(4-51)
Te .
S ER TS

v
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H~\ F I—-—HT - r: :—-l
, RS o =

Va A * B
f \P

(a) (b) (c)

r

Figure 4-11. Force Between Fibre (or Cylinder) and Single
Plates (a and c) and on Fibre With Two Plates

Figure 4-12 is useful in obtaining numerical values for F and
F,. A comparison of F against (F, - F 1), or equivalently F * against
K*, shows the error which would be made if the force on a wire between
two plates were approximated by the difference in the forces to each
plate individually. For H/r, from 5 to 10, the error is relatively
small. For high values ot H/ro the difference increases and is more
easily seen in the ratio plot, Figure 4-12,

n -‘4. v

C
¥ _ WO
FZ - FI 4HK : (4-52)

The force on the fibre may be expressed as the field at the fibre
times the charge on the fibre. As rO/H decreases far below unity, the
force on a fibre between two plates decreases mainly because of the
reduced charge on the tibre, while the force between a fibre and a
single plate decreases because of both the reduced charge and the
reduced self-field of the fibre.

On the other hand, as the diameter of the fibre approaches that
of the gap (r, — ), it seems clear that all significant effects between

4-22
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2L
F = F* [(vf-va) RN, ]g
2 2lL
F,-F; =K [(Vf-vB) T V- V) ]H
, A
Fy = Ke (v, - v  L/H
2
F,= Ko (V- V) L/H

RATIO, F/(F, - F}) |ALsO,
THE INCREASE IN BOTH
FORCE AND INCREMENTAL
FORCE OBTAINED BY THE
USE OF A SECOND PLATE
AT OPTIMUM VOLTAGE-
SEE EQUATIONS (4-52)
AND (4-60). ]

ASSUMED
CORRECT
CURVES

i 1 e A A i

L
4 5 8 10 20 40 50 80100 200

v

~——0—t—0-

E

S

._.I

s S

b

v |-
F/(F, - F|) RATIO

Figure 4-12. Forces in Figure 4-1 1, F, (F_ - Fl) and Their Ratio

2

the cylinder and the plates will be concentrated in the areas where they
are nearly touching. As a result, interaction of the effects on the
individual sides will approach zero as rj — H, and we would therefore
expect to have F — F, - F|. Itis in this area of H/r, (below about

3 to 5) that the assumptions originally made in Paragraph 4.2, approxi-
mating distances to the image line charges, became invalid. The
dashed lines, Figure 4-12, indicate approximately the correct curves

for F and F/(F2 - F) at low values for H/r, . "

#*These are lower values of H/ro than were of interest in the objective
of this analysis.

3

R e R T R g s+ e ae L PR —
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4, 5.2 Maximum Force

A practical question which might be asked is, "'If the voltage of
the cylinder and one plate are fixed, what is the voltage on the other
plate which will give maximum force?'" The torm obtained in
Equation 4-48 is useful here, because if V¢ and VB' for example, are
fixed, it is clear enough that maximum force is obtained when
VA = Vi"

On the other hand, we may ask, "If the voltage on the two plates
are {ixed, what tibre voltage will give maximum force?' Here it is
casicr to use Equation 4-45, V, = Vg - V, is fixed. Then vy = V -
1/2 Vp = Vi - 1/2 (VA * Vg). Thus, force is zero when the fibre
voltage equals the average of the plate voltages (no charge) and
increases linearly above and below that point, giving no "optimum."

4. 5.3 Increase of Force Due to Second Flate

Having established that, for given potentials on one plate and the
fibre, maximum torce is obtained with the other plate at fibre potential,
we now ask, "How much is the force increased by using this extra
plate at fibre potential, over having just the fibre and one plate?"
Figure 4-12 gives this directly; for

F F

is the ratio of the force on the fibre when it is between a pair of plates
with one plate at fibre potential (optimum), to the 1orce between the
fibre and a single plate. We see that for H/r, of 15 to 20 the iorce
increase obtained by the second plate is a factor of x 2, while the
increase is x 2. 5 for H/ro between 40 and 50.

4.5.4 Maximum 'Drive’'— Minimum Pickup

In certain sinusoidal drive applications, the steady ''d-c' force
is not significant, but only the "a-c¢'' component, at the desired drive
trequency. In this case, a d-c voltage component, called the d-c
"bias' voltage, is applied to the electrodes, while incremental voltage
changes, called the a-c ""drive's voltages, are added (usually through
capacitative coupling). It may then be desirable to reduce stray

4-24
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coupling of this drive voltage to other circuits; in this case, itis
desirable to maximize dF for given voltage changes. Defining

V =V, -V ‘ (4-53)
V. =V_ -V | (4-54)

the basic force equation with the string centered (a = 0) becomes {rom
Equation 4-48 ’

Cwo ( 2 2 )
F = Y Vb - VaL (4-55)
Then
aF oF
= ——— d + - 5
dF¥ oV Va peY dVb ) (4-56)
a b
c o
dF = —% V. dVv. - 4-5
2H [ b b Va dva:] ( 7

There are two cases of particular interest. The first is when
one plate only is driving, that is with, say, dV, = 0. This may be
required, for example if the other plate is being used as a pickoff
(sensor). The second case is c'iVa = -dVb; here, with both plates driving,
opposite polarity of the "a~-c' driving voltage is chosen to reduce stray
pickup-producing electrostatic fields.

One Plate Driving.

For dV_ = 0,
a
CV\'O
= V. d 4-58
E =270 Ve VY (4-38)

Thus, to maximize dF for a given drive voltage, dVy, itis
desirable to have the d-c bias, Vb, as large as practical. It is inter-
esting that, although the "d-c" force, F, depends on both V, and Vy,
dF, in this case, is independent of V,, the d-c bias on plate A. Thus,

4-25
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for a given Vi and dVy, the bias, V

a» may be chosen equal to Vp, so
as to keep the bias force Fp =20

, while not affecting dF/dVb.

Likewise, in this case (dVa = 0),

if the plate A were not present
from Equaticn 4-50

’

L ;
dI‘Z ZKVbd\b

(4-59)
and, using Equation 4-58
C
d¥ Two
dF, ~ 4HK (4-60)

which, referring to Zguation 4-52 is the ""Ratio'
Thus we have the seeming
plate A does not atfect the
does.

plot of Figure 4-12,
anomoly that while the fixed potential of

\value of incremental force, its presence

Both Plates Driving and dav_ =

-dV,.. Opposing voltage changes
‘stray'’ pickup and also because

this permits the two force components in Equation 4-57 to add directly.
This gives

are selected to minimize electrical’

C

WO
dF = 5o (Vo+t Vv )ay (4-61)
_ 2H b a b

]dVa = -dV‘D

In this case, dF is maximized,
maximizing the sum (Vb T Vi),
A%

for a given dVy = -—dVa, by
in which case we would likely choose

a - Vp and pick as large a d-c value as practical,

4-26
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5. GENERAL NT™ MODE STRING EQUATIONS

A parametrically-driven vibrating string, operating in the nth
mode, as in Figure 5-1, has characteristics which can be deduced,
directly, by applying, to one (or each) loop of the multi-mode operation,
the single-mode results as given in Reference 1.

To accomplish this, the symbols Z, Xor X4, €, wo, u, T, and
N1, used in Reference 1, are first replaced with the same symbols
primed, £' ,» Xo'y Xg', &', we', u', T' and n1' in the equations in
Reference 1. The primes indicate that the symbols apply to one loop
of the string, Figure 5-1, and thus differentiate these symbols from
the unprimed symbols which are used here to apply to the entire string.
(For first-mode operation, this one loop is, of course, identical to the
entire string.) This set of equations, for equilibrium, self-start, etc,
with the primes added, thus applies to any one loop of the entire string.
To obtain the expressions for multiloop operation, it is thus necessary
only to relate these loop parameters to the entire-string parameters,
and, using these relations, eliminate the loop paramecters ircm the
equations,

- /= of —

\
U
Z\\/

ONE
LOOP

» Xd = nXd‘

Figure 5-1. Vibrating String, n'P Mode

5-1
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To begin, the length of one loop, f', is related to the length of

the ¢ntire string by v

I (5-1)

and the initial elongation and the end drive amplitude must be the sum
of the initial elongation and drive amplitude for all loops,
X

o = NX! | S (5-2)

i

X

"

g =X, _ (5-3)

Here we assume that the added axial motion of loops near the drive
does not significantly affect string operation, just as axial motion was
neglected in the basic derivation, on the basis that longitudinal natural
frequency is much greater than lateral natural frequencies. Numerous
values remain the same, including

Y1 = maximum lateral deflection at string antinode {5-4)
@ = driven string trequency, or half the end-drive
frequency {5-5)
P = string mass density . (5-6)
E = Young's modulus of string material (5-7)
X
& . <
22X
o
nx ‘'
i d
- 2nX !
o
= &' dimensionless string drive (5-8)

The frequency, wg, will now represent the lowest natural fre-
quency of the entire lcngth,ln, and is thus given by

@ =

". ) Y

D

s e e s s s e————————
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1

2
X'"E
~~—n1 per
w '

) (5-9)
n

. _ 1
That is, the frequency of the lowest mode is - times the frequency of
any of n loops. Then the dimensionless frequency parameter becomes

(5-10)

£
J
SIS

L
f
o o

"
3
“

The string-amplitude nondimensionalizing factor, T', will now
become a parameter in terms of the entire string of length, [, and the
entire string elongation, X5. We choose the definition

I
4 -
T:4[ Yo (-,i) v
ml 3E
1
2
()
I 3
=nT' {5-11)

This choice is desirable because, then, for first-mode operation (n = 1),
T reduces to the previous definition, The dimensionless amplitude now
becomes

Y
— 5-
) - (5-12)
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Using these changes, the various conditions given in Reference 1
can now be converted to the conditions for nth mode operation in terms
of entire-string parameters,

The equilibrium condition

2 , 2 :
771' :.f tu -1 _ (5-13)
becomes
& .
2 2 u
= + -1 5-14
non, ¢ 3 { )

In terms of the drive amplitude and frequency, the conditions for
self-start,

2 2
§'> 1-u' for u' <1

2 2 -
f.’ > u' -1 for u! >1 (5-15)
become
2
2 2
f >l-u—2 foru < n
n
> 4
~ 2 2
£ ~u-—2— -1 foru >n (5-16)

n

The '"'critical'’ condition (for no anisoelastic bias, no third har-
monic, for constant tension and for linear operation), from Reference 1,

( 232
n, s -
1 2 : -
{ or & R (5-17)
L2
| or 7)1 - 3§

5-4
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becomes
( 2,2 3 u® .
S U W
n
1 uZ
{ or £ =~Z— 7-1 (5-18)
n
2. 2
| orn 7]1 =3¢

The condition for no ''drop-out' (i.e., oscillations continue if
alrcady started),

2 2
711' >0 for u' <1

&' >0 for u' >0 (5-19)
becomes simply

2 2
"1 >0 for u < n

& >0 for u >n (5-20)

These values are now plotted in Figure 5-2 along with the
pertinent equations and definitions of terms.

To consider which mode of vibration the string will break into,
when sufficient drive level for self-start is attained, we note, in
Figure 5-2 (plots and equations) that, for example, if u“ = 1,1,
the first mode will start at a drive amplitude of € >0. 1, while it
would have taken a drive of & >0.725 to start the second mode. On

the other hand, at u‘)‘ = 2, the first mode will not start until §>2,
while the second mode will start for € >0. 5. There is thus a frequency
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above which the string will tirst break into oscillation at the next higher
mode, and below which, oscillation will commmence in the next lower
mode. '

For the general case,_between the nth and the (n + 1)st mode,

that is for n? < uz < (n + 1)7, we can use Equation 5-16 and state

that the (n + 1)5t mode will start before the n'P mode if

2
E>1 .2 > (5-21)
(n + 1)
before
2
E>— -1 (5-22)
n
that is, if
2 2
| G 5 < uz -1 (5-23)
(n+ 1) n
2 2 '
u >l ) 1 (5—24)

2
nz (n +1)

For n = 1, the dividing frequency ratio between the first and
second mode starting is found®toc be u“ = 8/5. This value of uZ 18
indicated in the plot, Figure 5-2. At this frequency ratio, first
and second mode both require € 2 0.6, to obtain self-start. (We
note, however, that near ul = 8/5, the amplitude of the first mode,
immediately after self-start is 7 12 = 1.2, alarge value, while the
second mode starts at 1712 essentially zero. Thezrefore, in practice,
it is expected that it would be necessary to have u” appreciably
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greater than 8/5 before the second mode would be clearly seen to be
starting first, This is to say that it is not expected that the transition,
between first and second mode at u® = 8/5, will be very sharp, Inter-
action between two modes existing simultaneously, and the effect of
vibration in one mode on the possibility of another mode starting,

have not been studied. )

In practice, dealing with a particular instrument, operating in
the mode for which it was designed, one tends to think only in terms
of the trequency of that mode. Hence it 1s convenient to define that
frequency as f,, as is done in Section 6, from Equations 6-16 to
6-20. As discussed there, we then use up = u/n, in more convenient
association with experimental results.

h_mode equations and

Equation 5-2 is self-contained, with nt
term definitions, as well as first and second mode plots, so is
generally more convenient for reference than the individual equations

in the above development,
\

5-8
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6. DETERMINATION OF DETAILED MODEL FOR
STAR GYRO TORQUING

6.1 INTRODUCTION

In this section, the results of the previous three sections are
applied in order to obtain the overall torquing response. The major
result is expressed in Equation 6-15, with supplementary expressions,
Equations 6-4, 6-21, and term definitions following Equation 6-21.

In obtaining this, additional analysis is done, including the
effect of non-ideal plate geometry, and the effect of platform servo error.
In addition a calculation of the theoretical value for string-amplitude
pickoff sensitivity is made, using the results of Section 4,

Finally, the torq\uing sensitivity expression is expanded by partial
differentiation to obtain a set of individual error terms. Afiter
presenting a partially specialized form of this equation, the terms of
this set which are directly temperature sensitive are combined into
a temperature-sensitive term. A typical error budget is presented and
the nature of the errors is discussed,

H
FLAT PLATES ’/
(STRING
REFFRENCE) '9

(PICKOFF AND
TORQUING)

Figure 6-1. Electrostatic Plate Geometry. String is Vibrating In
Second Mode in a Vertical Plane,

6-1
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6.2 DEVELOPMENT

6.2.1 Combined Torquing Expressions

The fundamental torquing equation, from Section 3, is

9

d o1 : ‘
Agp = K [cos Or - w7 o8 Or»r 21Ur(sm ZOd)cos(Or fzosaEl (3-31)
repeated
where
2k nFo Sn
K = — (3-32)
pa w lY, repeated
~1/2 i / .
sn:/ S(x) sinnT—(x+—2-)dx , (3-14)
repeated

L2

S(x) is the space distribution function in the expression for force per
unit length, F S(x)T(t;), Equation 3-8. (S(x) and the time distribution
function T(ty) are both unity at their maximum values.) Referring to
Figure 6.1,

‘Ite <x < _lc
S(x) = ‘ (6-1)

0, elsewhere

We are currently interested in the case of the string operating in
the second mode (n=2). In this case, integration gives

i 1 2 ”‘ 1 2”ge

(6-2)

To express the force in terms of instrument geometry and applied

voltages, we use Equations 4-48 and 4-47, combined, for the force on a
string centered between infinite parallel plates, Figure 4-11(b),

F:FfiL[VZ-VZ] (6-3)
_b a

6-2
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where
vy = VgV,
v, =V, -V,
LA " (6-4)
2 In(1.27355)

o
F* is a quantity which may be obtained from the plots in Figure 4-12.

Because normal string~vibration‘ is parallel to the plates, the
use of the equations for the string centered is correct. The effect of
the plates being curved and finite (Figure 6-1), rather than flat and
infinite will be treated below (Paragraph 6.2.2). For the moment
we may think of H = R. ‘

In Paragraph 3. 3.4, the conditions for obtaining maximum
"drive'' (the change in force resulting from voltage change), while
preserving minimum stray '"pickup' between torquing and low-level
circuits, are considered. As discovered there, the preferred
arrangement is to have the same ""a-c" drive voltage, vd added and
subtracted from identical bias voltages, V_, on the two plates.

Thus

Balanced
drive (6-5)
A\

1

<
\

Rl

a o d

which can be conveniently mechanized with the string grounded (V _=0;

in current instruments the string is internally grounded)., However, in

tests currently being conducted, only two pairs of plates are available
and it is necessary to use one plate of the pair parallel to the string
plane for the string-angle pickoff. For this reason, only one plate
parallel to the string plane is available for torquing. The voltages on
these plates is therefore

V. =V + v
b Bo d One-plate

drive

(6-6)

=V
va Ao
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Substituting this in Equation 6-3, letting Vg, = V,, and, dropping the
"d-c'' termxs, which have been shown previously to have no effect on
torquing, we obtain ''driving" force as

w1 2
AF = F - [zvovd+vd :l | (6-7)

(Had we used the driving voltages in KEquation 6-5 rather than those
of Equation 6-6, the drive would have simply been doubled, so there
is no important loss in generality.)

This drivi'ng force, divided by the length, L, and multig;lied by
the space distribution function, S(x), is the net force per unit length of
Equation 3-8,

AF
Al—:S(x) = FOS(x)T(tI) (6-8)

This gives an expression for the forcing time function in terms of the
applied voltages and geometry

AF 3
FOT(tI) == (6-9)
or
F 2
Fo T(tI) e [ZVOVd+\'d } (6-10)

If the drive voltage is now given a sinusoidal form as in Figure 3-4,
then Equation 3-14 may be integrated to obtain the response. Upon
doing this, it is discovered that the de term leads only to harmonies,
which have no known effect on torquing. Hence, to shorten the

derivation here, it is most convenient to neglect this term which

produces only harmonies. This enables us to utilize the solution
already obtained in Equations 3-31 and 3-32, repeated above. The
drive voltage is now given the same time functions as the force, T(tl),
depicted in Figure 3-4,.

6-4
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vy = Vo T(t) (6-11)
cos(wtI - Or),
v, = V. L Z+0 +0 +0 <not<2kr-Z+0 +0_ -0
d Ty 2 r sa q <" "2 r “sa d
0,
elsewhere * (6-12)
Then,; combining Equations 6-10 and 6-11, neglecting the
harmonic-producing vq“ term, as just stated,
2F= Vovd
Fo T THT() (6-13)
2ERV V
o T
F_ o= = (6-14)

Combining Equations 3-31, 3-32, 6-2, and 6-14, we have

. 1
k}?vVoVT ,: > CcOs

2mf
C

)

2y
e
+—=cos

2 4

|

Ad

4

2

2
paf

HY,

[cos 8]
r

Shn (6-15)

D .
X[l 'Go‘r*:l Kp - -

The factor Kp is an added term, used to account for the diiference
between the finite-width {lat or curved plates actually used, and the
infinite flat plates assumed in the solution (see Paragraph 6. 2.2).

The factor involving D/G,T . comes from Equation 6-31 developed in
Paragraph 6.2.3. It represents the effect of the gyro ""error' signal
which is required by the platform servo. This gyro torquing error

is inversly proportional to the platform servo gain G,, and is propor-
tional to the damping D, on the platform, and to /7., an inherent
STAR gyro characteristic, discussed 1in detail in Reference 1,

gd 1
-—— cos 06 +—— sin 26 cos (6@ + 20 )
B (4 T T r sa

for string in second

mode (n=2)

6-5
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The factor F*, a function of H/ro, may be obtained directly from

the plot, Figure 4-12, or from Equation 6-4.

The torquing scale factor expression, in the form of Equation 6-15
is especially useful when the torquing-voltage amplitude, VT, is being
slaved to the measured string amplitude, because the relation between
VT and Y| is then obtained directly from this control system.

To obtain, theoretically, the absolute value of the torquing
scale factor, it is desirable not to use the theoretical sensitivity of the
capacity pickoff to measure Y, directly, because a large proportion
of any theoretical errors which would make Yy, appear, say, large,
would carry over to the capacity torquing theory and cause the
sensitivity F* also to appear large. Such errors thus would not be
revealedin A¥®, Equation 6-15, because these two effects would
cancel. To measure Yl therefore, we prefer to use the basic string
theory, as modified here in Section 5 for nth mode operation. Using
Equations 5-12, 5-11 and 5-18,

Y,

11

n,T

2V o, g . 2 1/2

p 1/2
u
2 a (?) ( > -1) (6-16)

n

H

The natural frequency, w o here is the first-mode natural, and u
is drive-frequency-to-first-mode-natural-frequency ratio. When
dealing with higher-mode operat'ion, it is more convenient to talk in
terms of the natural frequency of that mode, which is the quantity

normally measured experimentally., The nth mode low-amplitude

natural frequency is

n
= f = f
2m n n o]
nw,
and the frequency ratio, intermsof f orw , is
on on

6-6
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-~

f w : '
YT T o . (6-18)

n n

f
woo= (6-19)

o

. -

u o= (6-20)

This frequency ratio, u , is a number near unity and corresponds to
the ratio which is familiar in experimental parlance. Equation 6-16
can then take on the more convenient form

—f g2 1/2 1/2

l ’

- —4;2 ———“2(——2) <un2 -1> (6-21)
n

Equations 6-15, 6-2, and 6-21, thus give the total scale factor
in rather convenient form. Term definitions are now repeated for .
7 convenience. Units are of any consistant set.

"torqued'' or precessed angle {radians) per pulse (sine-

A9

wave pulse, electrostatic on one plate) - second mode

k = number of full sine waves per pulse (1 in current
experiment)

K = plate geometry factor -- see Paragraph 6.2.2

p

: . \-12 2

€ = dielectric constant = 0.0885 pf/cm = 1. 99 Ibf/volt
H = the half-gap between electrostatic plates
r = fibre radius

o
V = torquing bias voltage

o
VT = voltage amplitude (peak) of torquing sine pulse

p = mass density of string material

. . : 2
a = string cross section area = 7 r
o

. £ = frequency at which string is vibrating (second mode)

6-7
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Yl = string amplitude of vibration (peak at anti-node).
)/ = total length of string.
le’ [C = electrostatic-plate dimensions (see Figure 6-1)
Or’ Od, gsa = torquing pulse phase errors (Figure 3-4)
. th
fon = nfo = low-amplitude natural frequency in n mode
n ' = mode number = 2
E = Young's modulus of fibre material
2 — . w \¢ . . .
u = ''u-squared ratio" = = ratio of driven
n w
on
frequency to lowy-amplitude natural frequency squared
T = STAR gyro time constant expressing the anisoelastic
drift effect.
GO/D = platform servo "velocity-error coefficient"

The three foregoing boxed equations are convenient for obtaining
such information as the absolute value of the torquing scale factor, and
changes when the electronics are built to maintain VT proportional to Y.
Fordirect temperature effects, for example, it1is convenient to combine
these, along with an expression for fn from Equations 6-19, and 5-9

f = nf
n o
1/2
L XE
Lf—( -7 ) (6-22)

and f, the vibrating frequency, which is controlled by the resonant drive,

having the frequency

f =af—2-2 ' (6-23)

2 1
- L
(l Ya )"d q

6-8
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where
o = dimensionless constant depending on the shape of the
resonator
Ed = Young's modulus of drive resonator
hd‘ = thickness of drive resonator g
vy Poisson's ratio of drive resonator
Py = drive resonator mass density
Ld = drive resonator characteristic length (diameter of a disk)

6.2.2 Effect of Plate Width and Curvature

The electrostatic torquing solutions presented up to here have
been for flat, infinite plates. This is a good approximation for the
plates actually used. However, the results can be refined a bit by the
method of free-hand graphing of Laplace's equation.

First, we note that the force, although obtained above by differen-
tiation of the energy expressions(Equation 4-21), can also be expressed
as the charge on the fibre, multiplied by the electrostatic field at the
fibre. For the string centered (t=0), the force (Equation 4-48), may be
written as

(6-24)

From Equations 4-16 and 4-2 we see that the charge on the string is
(for a =0)

-— PR 1 A4
Q= Q -5 C,V C,V, (6-25)
V. +V
A B
- cwo [Vf ‘—__??_—“—] ‘ (6-26)
6-9
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and (V4 - Vp)/2H is clearly the gradient due to the plates at the fibre.
Thus the force on the string is given by charge times gradient,. the
familiar expression for force on a particle with a small charge. The
somewhat surprising point here is that the expression is not restricted
to small charges as it is in the general case (for example, even for
the parallel wire and two plates, considered here, if the wire is not
centered, the force is no longer proportional to charge times field,
except at small charge). We note that the linearity of force vs voltage
is a concomitant of force being proportional to charge times field.

To make these free-hand sketches to conform approximately to
Laplace's field equation, it is necessary to make and modify the
sketches until all areas enclosed by the flux and potential lines are
approximately square, and boundry conditions are satisfied. In
Figure 6-2(a), this has been done for a pair of finite flat plates of the
proportions used in the tests made here. It is estimated from this
plot that the field at the center is about 0.9 of the average uniform
field for infinite ilat plates. *

Figure 6-2{(c) shows this field for curved plates, as used. Here
it is estimated that the field at the center is (6. 3/5) or 1.26 x the

average uniform field over that diameter.

Capacity, wire to plate, may be obtained as follows.

C - ¢ 222 (6-27)
gap
— (number of gaps between flux lir'les). (6-28)
* 7 (number of gaps between potential lines)

However, the difference here is too small to be indicated by these plots.
In this case, for example, Figure 6-2(b) gives a higher value for C

by 10 percent than Equation 4-47 for H/ry = 8, indicating that they are
the same within the accuracy of the plot. For smaller radii, the shape
of the outer electrode has even less effect. For R/rO = H/r0 = 100, for
example, the exact solution for the capacity of two concentric cylinders,
2meLl/In (R/r,), gives a value only 5 perCent higher than Equation 4-47
for infinite parallel plates, with the half-gap H equal to the outer radius
R. (As R/rgy - H/ry — = , the ratio of the two capacities —1.0.) It is
reasonable to consider that the gap in the cylinder (Figure 6-2(c)) ofisets
this 5 percent and to call the two capacities the same. '

%*Reproductions deviate slightly from original sketch, making scaling

more difficult.
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\ (a) FINITE FLAT PLATES.
PLATE-TO-PLATE FIELD

(b) FINITE FLAT PLATES
FIELD FROM WIRE TO
BOTH PLATES

(c) CURVED PLATES
PLATE-TO-PLATE FIELD

Figure 6-2. Free-Hand Plots of Fields.
‘ (Field Shown in First Quadiants Only)

6-11




e
b
LS

C5-1277/32 .

Thus we can approximate that the curved plates will have forces
and torquing rates larger than those given by the equations for infinite
parallel plates by a factor of

p curved = 1.26 (6-29)

and that the finite flat plates will have torquing rates related to those
of the infinite parallel-plate solution by the factor

Kp flat - 0.9 (6-30)

6.2.3 Platform Servo-Error Effect

This error is not so much a torquing error per se, but more a
gyro error, resulting from gyro and platform characteristic response
to torquing. A platform controlled by a vibrating-string STAR gyro
has a response as shown in the servo block diagram of Figure 6-3.

’

\
INVERSE OF
STAR TIME
CONSTANT 1

STAR PICKOFF
SENSITIVITY,

T % SERVO GAIN,
COMPENSATION,
AND PLATFORM

TORQUER TORQUER _
SENSITIVITY SEN%ITIVIIZ/'
®r %, @
TORQUING ” 1 ol Gis) 1 P
SIGNAL s P4 - s & Ds
& PLATFORM
P CHARACTERISTIC

$s = STRING-PLANE ANGLE
@T : RATE AT WHICH STRING PLANE IS BEING TORQUED
¢4 = DIFFERENCE ANGLE, BETWEEN STRING PLANE AND PLATFORM

Figure 6-3. Vibrating String (STAR) Gyro
and Platform Response to Torquing
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The STAR time constant effect is a result of anisoelastic bias,
described in detail in Reference 1, As a result of this effect, the
string plane precesses at a rate of (1/r ) arc sec/sec for each arc sec
the string plane deviates from critical. " The torquing response may, by
standard techniques, be obtained (in terms of the ILaplace s) from
Figure 6-3.

H (ISZ+ Ds)r:,:

2
r,+ Is+D Is + Ds

Gis) (6-29)

Isz + Ds + KG(s)

1 4
To obtain the error during steady-state torquing, we let s — 0. The
STAR gyro pickoff sensitivity is a constant, independent of frequency,
from dc to all frequencies of interest, and the servo and
servo torquer gain normally approaches a constant value at zero
frequency; hence, letting G(0) = G, we may write

o
o
|

¢ ’ .
?‘3— = —-—-—1—5— (6-30)
T steady 1+ o 7
state o
- D
= |:1 - G——r:,‘ ] (6-31)

D , ‘
for small G a3s is necessary for reasonable response. The term,
JO e
& is the fractional change in torquing scale factor due to servo
Te) b

response to gyro torquing. Gg,/D, known as the "velocity-error
constant’’ of the servo, must be kept large, consistant with the minimum
expected value of 7., and the required system accuracy.

This ratio of torquing rate with finite servo gain to what the torqued
rate would have been with an ideal, infinitely stiff servo (Equation 6-31)
has been added as a multiplier to the total torquing expression,
Equation 6-15. Any effect of the difference between the servo error for
steady-state torquing, and the servo error for a single pulse has not been
computed, only the steady-state value being used here.
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6.2.4 String Amplitude Pickoif Sensitivity

When the torquing pulse amplitude is controlled by the measured
string amplitude, the sensitivity of this pickoff becomes an important
factor. The capacity solutions in Scction 3 make it possible to
calculate the string-amplitude pickoff sensitivity on a direct theoretical
basis. Figure 6-4 shows the pickoff circuit used. The use of a trans-
former allows an improvement in the signal-to-noise ratio to be gained
by tuning the primary of the transformer to the string frequency.

V +AV

i —p
Q +4Q

Figure 6-4. String Amplitude Pick-off Circuit

It is assumed here that the caRacities CC include these tuning capacitors.

Although the excitation in this circuit is actually parametric, the
attendent difficulties can be avoided by dealing only with small pertur-
bations of the values. We assume symmetry so that AC, AV, Aq, and
i are negative images in the bottom half of the circuit. Then taking the
total primary inductance to be L. (end to end), we have

di
2 14 - —_— -32
2AN Ldt iR (6-32)

6-14
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The charge on each capacitor is 9 * A g, and the change ih charge is
Ad = CAV - VAC . (6-33)

for values sufficiently small that the AVAC term may be neglected.
The charge and current are related by

1= -3¢ Ad (6-34)

Then combining, and using the l.aplace s,

i = -CsAV - VsAC (6-35)
2AV oAV - vsA G (6-36)
Ls+ R -
from which
A_\% = - S,’a(l‘s "R ac (6-37)
LCs «~ CRs +2
Defining
2 1
S 6-38
“, L(C/2) ( )
v | Lo
Ir
= = 6-3
Qr R(C/.Z)wr R ( ?)
we have
<Q )
S r s - 1
Av 2%\ e AC (6-40)
v o T2 C
S ~ s .
P4
w Qrwr

When the circuit is tuned for resonance, s —*jwr and

AV AC .
—_— - - =2 -4
v (JQr 1) C (6-11)
6-15
\
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or the magnitude is

av | lac | [2

' v | l C I v e (6-42)
| ‘ :

lAX [ =9 AcC | (6-43)

and lags by 90 degrees, showing that the voltage signal, at resonance,
is in phase with string velocity.

From Figure 4-4 and Equation 4-47 we see that the change in
capacity (using the expression for the string centered, a good
approximation) is

«u C
w

AC - (6 -44)

2

_d(AC) | mey ' (6-45)
dx H '
Hin (1.273 —)

rO

Integrating over the length of the plates, as depicted in Figure 6.1, we

obtain
L.y
e
”(Yl 2nx
AC = = sin l dx (6-46)
Hin(1.273 —-)
r i
(o] C
\C [(Yl [ i ane | lcos Zﬂ[C:I (6-47)
= - CO0Ss —/—— T 1t
¢ 2
Hln(l.273—}—{—) . £ £
rO

The capacity C is not C,, but as stated, the total capacity in the
circuit including that used to tune the transformer.



C5-1277/32

6.3 TORQUING ERRORS

Writing an expression for explicit error terms is somewhat
trivial now that detailed theoretical expressions have been obtained
for torquing scale factor in Equations such as 6-15, 6-4, 6-21, 6-23,
and 6-31. Having these explicit expressions, the worst-case error
expression is simply

dlA®) | < LA¢)  dai
Ao “~ da Aé

i 1

(6 -48)

This may now be worked out, but it is to be emphasized that in
a particular case¢, the information desired may be more easily
obtained by referring directly to the expressions in Paragraph 6. 2.

For example, let us suppose that the torquing voltage is being
set by an electronic gain, VT = GTY), and that we wish the errors due
to the terms in Equation 6-15, using Equation 4-51, namely
GT = (VT/Y1), Pa = ’2?-1- (the fibre mass, m, is constant). V4, H, rg, {,

P Per 64 64 and 05, Differentiating with Equations 6-48, 6-15
and 4-51 (for small f's),

‘aag) 99T . Vs . df 2af
Ad) GT Vo 1 £
Zn[ Zruf alt er£ Zﬂl d,!z
C C c e e e
- tan - tan

/ VA T 4 e

- 1 dH 1 dr
- 1.273H H 1.273H r
In —m —_—_— o

In
o o

2 D
-k'rr,ad <9r +‘295a> dgsa —d<(} r‘>
: o¥ (6 -49)

6-17
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The last term comes from Equation 6-31, which was derived for a
string of pulses (steady state), Any difference which might occur

between a string of pulses and Yn individual pulse has not been
investigated,

If it is assumed that the 6's are nominally zero, then the df's
may be replaced by the values of §, and the last three terms above
should be replaced by (QKL - 1), from Equation 3-34, which is

1 2 2 2 1.3
-0 e + -
2 r k?r(gdgsagr Odgsa ¥ 3 gd )

In any case, we see that, because of the optimum choice for nominal
values of the €'s, the sensitivity to change of these phase angles is
not great. The reference phase, § r » 18 the most important, If

all phases change from 0 degree to 1 degree the contribution of the
expression above is

- (1.5 +0,05+0.05 +0,02)/10% - (for k = 1)
showing that 0. 1s normally dominant,

For values applicable to the present instrument under test, we
may evaluate some of the coeffecients.

{ = 1.74in
y/ = 0.120
e
H = 115
!/ r o
r.. changes from « to t:,c'
6's = deviations from zero
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These give the fractional change in scale factor,

dA ¢ ): dGT+dV

Ag G T Vo

dfe af

o df 2df
e f

- 0.545 - o. o=
4 lC 0.182 le
(6-51)
: dr
dH o
- 1.20-—ﬁ~+0.20 -
o
2
1 2 2 1
A Or B _k—r-rgd [g sa (Or * gsa)" 3 99 ]
D
-5
o

-

The worst case change is the sum of the absolute values of the individ-
ual terms. The rss (root-sum-square) error is more often used,
because it is the miost probable error. However, before doing the
rss, correlation of errors must tirst be accounted for, The most
important source through which correlated errors will occur is tem-
perature. The terms dl, df, dlc' dﬂc, dH and dr will depend on
temperature in a correlated manner.

We may assume that the drive frequency, f, is determined by

the natural frequency of a resonant driver

3 1/2
f = B Eh (6-52)

i
2 2
(1- vy mL
where Bi depends on the geometry of the resonator, h is its thickness,
L is a characteristic length in its plane, mis its mass, and E and v

are Young's modulus and Poisson's ratio.

If then
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L = Lo(l toay éT) (6 -54)
a 1alejaev® e
f 2 E/(1-vZ) 2 L
L a AT + X 4 AT (6 -55)
> Ed 5 %4

Assuming that the case and resonator are of the same material, then

at
1

af.
Ie

_ dbe (6-56)
Le

dH
H

adAT

The fibre will, in general, be made of a different material than the
case, so that ‘

o =C¥fAT (6-57)

We may take sample numerical values, corresponding to the tests
being made. For an Invar resonator and case and a fused silica fibre

o > 0. 3\_6 /°F
apy ® 280~~° psi/psi/°F

(or -33 to 280) {6 -58)
a Vo= 0.357% o 170 in, /in. /°F

6-20
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Anomolies of nickel-iron alloys of the Invar, Nilvar, Elinvar, etc,
type show so much variation with small changes in constituants and
heat treatment p that it is difficult to pick absolute values from the
tables for a given sample. The measured frequency change
corresponds to apg of 210\‘6 /°F, with ay too small to have much

‘effect, This is quite within the range of reasonable values, so is

used here (thc effect of Poisson's ratio may-also account for part
of the difference from 280 to 210). We will use 0. 9\'6 for « d - Then

d/gim 3 dGGTT+d\‘f’: + (103.8\-6/°F)AT
7 0 & 4 [Bsa (o + 0ua) 75 6“2](6_59)
D " |
G (100 sec)

We see here that the temperature term in this equation is com-
pletely dominated by the thermoelastic coefficient of the drive resonator,
apq- If this term proved to be a problem, it could be reduced by a
factor approaching 100 through use of a constant-modulus alloy such
as Elinvar,

If we were to select one part in 10, 000 as the desired stability
of Ad, an error budget might be selected along these lines;

Or = +0.5° (0.00872 rad)
0 = +2° (0.0349)

sa

- £D°

0, = =2

d
95T 43,100, 000

Gt
9V . +3/100, 000 (6-60)
x()

AT= %0, 3°F

Go/D- %1000
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The terms, in the order of Equation (6-59), would then be +3¢2
=5 23, 1\-5 F3,805 43¢5 ;1\'5. The rss of these terms is about
8/100, 000, or slightly less than one part in 10, 000, The fact that the
algebraic sum adds up to a low value is simply a coincidence in the
choice of ‘he sign ot changes, which cannot be predicted in advance
except where known ccrrelation exists, as in the case of the terms
combined in the AT term, The root-sum-square, thus, is the proper
method of combining these terms,

In connection with item (1) (iv) of the contract, the phase errors
(A) are covered by the three 6 terms in Fquation 6-49, the pulse
magnitude (B), and string amplitude term (C) have been combined in
the first term, Equation 6-49, the torquing gain term, although they
can be left separate when expanding Equation 6-15 according to Equa-
tion 6-48, 1if desired. The effect ot string amplitude pickoff non-
linearity (D) is, first, to produce harmonics in the signal which, when
amplified, is used for torquing. The string, as torqued here, has been
shown to be insensitive to these harmonics by the integration of Equa-
tion 3-15 with harmonics in T (tj). The effect of the nonlinearity,
secondly, on amplitude of the fundamental appears as an amplitude
sensitivity of the gain term error, dGT /GT , and may be obtained
from Equations 6-43, 6-44 and 4-28. ‘lhe angle-off (F) produces
trajectory ellipticity (E), which, through a mechanism discussed in
detail in Reference (1), causes string-plane drift; this effect is des-
cribed by 7. ; the resulting error is the last term in Equation 6-49.

The effect of electronics errors (G) is expressed in the first
'terxn of Equation 6-49, gain stability, and the second term, bias
stability. In the form, Equation 6-59 the effect of temperature sta-
bility (H) is shown. The dominant effect in this temperature term is
the thermoelastic temperature coefficient of the disk resonator. The
use of a material with a more constant Youngs modulus for the drive
resonator, or the use of other methods for controlling drive fre-
quency, would reduce this term greatly.
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1. LABORATORY MECHANIZATION FOR PROVIDING
STAR TORQUING DATA

7.1 INTRODUCTION

This section descrikes the mechanization used to yield STAR
Gyro torquing data, The data obtained is described in Section 8 of
this report, '

The operation of this implementation can best be described by
reference -to Figure 7-1 which is a block diagram of the torquing loop.

The instrument used during the tests is an Invar STAR gyro
operating in the second mode. This instrument contains two pairs of
capacitive plates to sense motion of the vibrating string. One pair,
referred to here as the reference plates, is essentially perpendicular
to the plane described by the string vibrating motion; it provides a
signal proportional to the amplitude of the string oscillation. The
second set of plates is approximately parallel to the plane described
by string motion. One of these, called the pickoff plate, is used to
sense the angle between the string plane and a reference plane defined
by a null output from the pickoff plate. The other plate is used to
provide torquing pulses to force the string plane to change orientation
in a controlled manner,

The string in the test instrument vibrates at a frequency of
approximately 6,225 cps. The disc driving the string into this motion
thus operates at twice string frequency — approximately 12,450 cps.

The general operation of the mechanization is as follows:

Neglecting for the moment the flow of torquing pulses, the basic
platform servo is straightforward. The pickoff plate (Plate 4) is
used to sense any changes in the string plane angle from the servo
nulling position., Signals obtained from this plate are buffered by
the pickoff buffer amplifier, amplified, filtered, and applied to a
phase sensitive demodulator. The reference for the demodulator is
obtained following suitable amplification from the reference plates
(Plates 6 and 7). Following demodulation, a d-c¢ signal proportional
to string plane angle deviation from the servo null is available. This
signal is compensated, amplified, and applied to a d-c platform torquer,
This drives the platform mounting the STAR gyro in a direction towards
servo null, thereby providing a stable platform,

7-1
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Torquing of the STAR gyro which subsequently controls this
platform is accomplished by providing voltage pulses of proper phase and
amplitude to the torquing plate (Plate 5). In this mechanization the
pulses take the form of integral sine wave pulses although other pulse
wave forms could be used. Formation and control of the torquing
pulses is accomplished using circuitry designated as pulse forming
and synchronization circuitry., A continuous sine wave at string
frequency and proportional to string oscillation amplitude is obtained
from the reference plates, Using digital techniques, this sine wave is
broken into integral sine wave pulses either in-phase or out-of-
phase with the string velocity, The phase of the pulses along with
torque plate.bias polarity determines torquing direction. The pulses
are applied to the torquing plate at a rate controlled by an external
variable oscillator. The logic limits the maximum torquing rate to
one -half string frequency. (This is not a necessity but somewhat
simplifies the logic mechanization.) The pulses applied to the torquing
plate cause the string plane to change orientation in a controlled ‘
manner, This change is sensed in the normal servo channel and the
servo action will cause the stable platform to rotate.accordingly.

As evidenced by Figure 7-1, an electrical cross-talk of torquing
pulses from plate No, 5 to plate No, 4 occurs during torquing. This
cross-talk can be considered as introducing an excessively large noise
input into the servo channel and if allowed to continue will disrupt the
servo. The method of bypassing this difficulty in this mechanization
is to provide a cancelling pulse into the servo to null out the cross-
coupled pulses. The cancelling pulse is obtained by applying the
torquing pulse to the rejection pulse forming network at the same time
it is applied to the torquing plate, This network closely approximates
the transfer characteristic seen by the torquing pulse from the torqu-
ing plate to the point where cancellation 1s to be done, The actual
cancellation is accomplished by summing the output from the network
with the cross-~coupled pulse in a commercial differential amplifier
(Tektronix Type D).

7.2 DETAILED CONSIDERATION

Certain elements of this mechanization deserve elaboration.
Some of the circuits involved are unique to the implementation presently
being used and thus fundamentally determine satisfactory operation. In
addition, the manner in which data is accumulated and the factors
which control its relevancy are important, A number of figures are
included which may or may not be discussed in detail. Also



C5-1277/32

oscillograms are shown when pertinent to illustrate opération of the
mechanization, These also serve to show critical settings which must
be maintained in order to provide stable operation during data
accumulation.

7.2.1 Circuit Consideration

Figure 7-1 depicts the circultry used in this STAR gyro torqu-
ing mechanization in block form. The self-oscillator loop (disk drive
oscillator) shown at the top 1s required to drive the string into stable
vibratory motion. It is required for operation of any STAR gyro but
it is not directly pertinent to the discussion of STAR torquing. It
is pictured in Figure 7-1 since certain critical signals in the oscillator
loop are used tor reference in the torquing mechanization (i, e., disc
drive voltage at test point No, 4 and the disc pickoff voltage at test
point No. 7). Five blocks of circuitry are unique to the gyro torquing
mechanization and are indicated by asterisks in Figure 7-1. These
will be discussed below. The rest of the circuitry is essentially
conventional (a-c gain, phase shifters, switching demodulator, etc)
and will not be considered further, ‘ ’

Pickoff Buffer Amplifier. Figure 7-2 depicts the pickoff buffer
amplitier, This circuit incorporates low noise transistors (2N930's}),
boot strapping to pick up the input impedance, and guard shielding

on the pickoff signal input line. The utilization of guard shielding
allows use of reasonably long cables without excessive shunting of
pickoff signal due to line capacity. No voltage gain is incorporated

in the amplifier as a nighly stable voltage transfer function is required
if adequate cross-coupled pulse rejection is to be feasible, The input
impedance of the ainplifier is approximately 6t megohms at signal
frequency. (The source impedance of the pickoff signal including
shunt capacities is about 560 kohms at signal frequency.) An approxi-
mate measurement of amplifier output voltage versus string plane
angle was made using the test STAR gyro., This scale factor is
approximately 0.2 uv/sec with a pickoff plate excitation of 100 volts,
For purposes of designing the rejection network required for cross-
coupled pulse rejection, the torquing plate to pickoff amplifier output
transfer function was determined, With the test instrument described
previously and the amplifier of Figure 7-2, this transfer function

is given by

KS('TZS 1)

Pickoff Amplifier Output _

Torque Pulse Voltage (Tl s+ 1) {(r,s + 1) v

3
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PICKOFF PLATF D-C BIAS
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Figure 7-2, Pick-off Buffer Amplifier
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~

K =~0.2x 10 ~sec.

T =~0.94 x 10'4

-8
7'2 =4,5x 10
-0
7'3 ~1.0x 10
Rejection Pulse Forming Network, Inspection of the transfer
function determined above as well as experimental data indicates that

the zero atw) = l/T2 can be neglected. The lead introduced is




\
C5-1277/32

sufficiently outside of the frequencies of interest as to have negligible
effect. Thus a network to synthesize

Pickoff Amplifier Output Ks v

Torque Pulse Voltage = (1,8 + 1) (735 + 1) v

where

K=~ 0.2x 10‘5 sec

T, =~ 0.94 x lO-4

T3zlx10

was determined. This network is shown schematically in Figure 7-3,

Tuned Transformer Amplifier, Figure 7-4 is a schematic of
the amplifier used to derive the signal from the reference plates
(Plates 6 and 7). This amplifier incorporates a high Q (Q =60)
transformer which is capacitively tuned to provide anti-resonance at
string frequency. Use of tuning in this manner provides a fairly large
signal proportional to string amplitude with a minimum of active gain

130-400 pf
NOMINAL= 270 pf

680 pf NOMINAL =] K
TORQUER V v

T R ~ T
PULSE O 14__4,_% l ) Y I;}[:ZJ}IJEETION

INPUT o5 K

0. 047 mf 0-10K

JL
b NOMINAL= 2 K

XB_~ (0.2 x 10-5)5 vy
Vo s20 94 10719 4 094« 107H +1

v

Figure 7-3, Rejection Pulse Forming Network

v
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NO, 30255-404 <

o
REFERENCE PLATES
D-C BIAS 0.1mif

Figure 7-4. Tuned Transformer Amplifier

(gain =~ 20), Experimentally, it has been found that the circuit Q was
too high. De-tuning due to slight ambient changes was causing un-
reasonable phase shifts in the output signal. A shunt resistor, Rg,
was connected across the transformer for stabilization., The circuit
is now adequately stable. With the test instrument and the amplifier
as shown, output voltage at nominal test temperature is about 400 mv,

Pickoff Channel Filters, Figure 7-5 depicts the filtering which
has been incorporated into the servo channel. The input to the filters
contains noise predominantly generated in the input stage of the
pickoff buffer amplifier, In addition noise components due to imper-
fect cross-coupled pulse rejection are possible, This latter noise
source, potentially periodic in nature, if not filtered out will un-
desirably affect servo operation. For this reason the action ot the
filters can have a substantial effect on the performance of the

7-7
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FILTER

200-600 pf
OUTPUT
0.0033 mf
OUTIPUT
FROM <>———4 F————db
TEK TRONIX
[YFED

S Los B 2K ‘l'o_ma ot 0.0033 mf
I 388 K

Figure 7-5. Pick-off Channel Filters

mechanization. The filtering used consists of one active filter using
twin-T feedback preceded by a conventional series—parallel L.C band-
pass filter,

Pulse Forming and Synchronization Circuitry., Figures 7-6
through 7-11 provide detailed schematic information as well as
descriptions of the logic performed by the circuitry, They are in-
cluded here as reference only since the details of this circuitry do
not directly affect the operation of this mechanization. The only
requirement for this circuitry is that it faithfully reproduces an in-
tegral sine wave from a continuous sine wave and controls the

necessary phase relationships.

7-8
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ANALOG A A VAVAVAVAVAVAVAVAVAVAVAVAVY,
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SET F.F.3
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|
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RESET F.F.3 rj

L

|
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(F.F.1 0—&1)
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Figure 7-7. Timing Diagram Depscting Logic Being Performed
. by Pulse Forming and Synchronization Circuitry
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7.2.2 Laboratory Setup Operation

To illustrate the operation of this mechanization and to provide
background for the procedures involved in data accumulation, a
number of oscillograms have been taken. These are photographs of
the signals appearing at various points in the laboratory setup as
observed on an oscilloscope. In all cases the signals shown refer to
test points 1-9 in Figure 7-1. For convenience these test points are
defined as:

TP1 - Demod‘ulator Reference

TP2 - Pickoff Error Signal (after filtering and amplification)
TP3 - Demodulator Output

TP4 - Disc Drive Voltage

TP5 - Torque Pulses

TP6 - String Amplitude R-cferencAe

TP7 - Disc Pickotf Voltage

TP8 - Pickoff Buffer Amplifier Output

TP9 - Tektronic Type D Preamplifier Output

Oscillogram 7.1 (Figure 7-12) is a representative picture or the
normally monitored signals throughout the mechanization. Achievement
of this set of wave forms indicates that the mechanization is working
satisfactorily. The servo loop is closed and the instrument 1s being
alternately torqued left and right with no net torquing rate.

Oscillogram 7.2 (Figure 7-13) provides a reference for the gain
scttings throughout the loop. This picture is used when it is desired
to check or return the loop gains to a nominal set of values. This
picture is important when it is desired to make runs to check data re-
peatability and serves as a monitor of gain stability.

Oscillogram 7. 3 (Figure 7-14) is used as a reference for phasing
the demodulator reference. Monitoring of the demodulator reference
phasing and compearing it to this photograph indicates phase stability of
this quantity. In addition, the picture is used as a basis to allow re-
turning the demodulator reference to its initial set point in the event of
any phasec shift. This is vital for coherent data accumulation.

7-15
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Oscillogram 7.4 (Figure 7-15) is used as a reference for phasing
“the pickoff error signal. Monitoring of the pickoff error signal and
comparing it to the photograph indicates phase stability of this quantity.

Oscillogram 7.5 (Figure 7-16) is used as a reference for phasing
the string amplitude reference signal. Monitoring of the string ampli-
tude reference phasing and comparing it to the photograph indicates
phasec stability of this quantity. It should be noted that any shift of this
quantity affects both the modulator reference phasing and the torque
pulse phasing.

Oscillogram 7.6 (Figure 7-17) is used as a reference for phasing
the torque pulses. Monitoring of this quantity and comparison to the
reference photograph indicates the phase stability of the torque pulses.
In addition, when it is desired for data accumulation to intentionally
shift phase from the photograph reference position, use of this refer-
ence 1s necessary to set the desired phase shift.

Oscillogram 7.7 {Figure 7-18) shows the normally monitored
quantities while the instrument is being torqued at maximum rate. The
top set of traces is for one torquing direction while the lower set is for
the other torquing direction. Note the phase relations of the torquing
pulses and the polarity of the demodulator outputs.

Oscillogram 7.8 (Figure 7-19) is similar to Oscillogram 7.7
except a rate of one-half maximum is used.

Oscillogram 7.9 (Figure 7-20) is used to show the string actually
‘precessing while being torqued. The servo loop is open and torque rates
are applied in both directions. Monitoring of the string plane angle
(T.P. 2) and use of a slow scope sweep on this trace shows the pickoff
angle buildup. The demodulator output (T.P. 3) is also shown on a
slow sweep and clearly shows the d-c output buildup as a function of
pickoff angle. '

Oscillogram 7. 10 (Figure 7-21) is used to show the waveform of
the torquing pulse when the turn-off and turn-on times of the pulse are
varied. This figure shows pulses one full string cycle and one-half
string cycle wide with different turn-on times.

Oscillogram 7. 11 (Figure 7-22) is used to show the waveform of
the torquing pulses when the turn-on and turn-off times are varied.
This figure-shows pulses one and one-half string cycle and one-quarter
string cycle wide with different turn-on times.

7-16
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rw " e y. oy
10v/cm—- -——Demodulator Reference (TP1)
2v/cm ! -——Pickoff Error Signal (TP2)
10v/cm——— | -——Demodulator Output (TP3)
50v/cm—e | ——Disk Drive Voltage (TP4)
lv/cme—e ‘ ~——Torque Pulses (TP5)
f
g
10v/cm— ’ ~———Demodulator Reference (TP1)
2v/cm— -———Pickoff Error Signal (TP2)
10v/cm—- <——Demodulator Output (TP3)
50v/cm——e | -——Disk Drive Voltage (TP4)
lv/icm—- x ——Lissajous Figure with Torque Pul-
L o ses (TP5) on vertical and Disk

Drive Voltage (TP4) on horizontal.

Figure 7-12. Oscillogram 7.1: Normally Monitored Signals
Throughout the STAR Gyro Electrostatic Torquing Mechanization

10v/tm——18 <——Demodulator Output {TP3)

2v/cm— «+——Pickoff Error Signal (TP2)

-« Tektronix Type D Preamplifier
Output {TP9)

~— Pickoff Buffer Amplifier
Output (TP8)

50mv/cm—

Imv/cm—

10v/em——r -——Demodulator Output (TP3)

2v/em—~ ~——Pickoff Error Signal (TP2)

-~ Tektronix Type D Pream,lifier
Output (TP9)

50mv/cm —e

~—— Pickoff Buffer Am lifier
Output { TP8)

Imv/cm—e

Figure 7-13. Oscillogram 7.2: Pickoff Error Signals at Various

TP's in the Scervo Channel, Used to Verify Loop Gains. (Note phase
‘ reversal between top and bottom traces)
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10v/cm——oe <——Demodulator Reference (TP1)

i0v/cm
50v/cme—. !

-———Demodulator Output (TP3)
-——Disk Drive Voltage (TP4)

2. 5v/cm—- ~—— Lissajous Figure with Demod-
ulator Reference (TP1) on ver-
tical and Disk Drive Voltage

(TP4) on horizontal

P o S ———

10v/ecm— <——Demodulator Reference (TP1)

10v/ecm <——Demodulator Output (TP3)

50v/cm—e <-—— Disk Drive Voitage (TP4)

Mo e e e s e

2.5v/cm— -—— Lissajous Figure with Demod-
ulator Reference (TP1) on ver-
tical and Disk Drive Voltage

(TP4) on horizontal

Figure 7-14. Oscillogram 7. 3: Demodulator Phasing With Respect to
Disk Drive Voltage. Normally Used for Demodulator Phasing Checks.
(Note that the error signal phase has been reversed between
the ton and bottom traces)

2v/ cme——. [T mw—wm‘"ﬁﬂ ~——Pickoff Error Signal (TP2)
i
!
. 3
50v/cm— . 1 <—Disk Drive Voltage (TP4)
|
2v/cm—e | . -——Lissajous Figure with Pickoff

te

i Error signal (TP2) on vertical
; and Disk Drive Voltage (TP4)
! on horizontal

2v/cm—e { ~~—Pickoif Error Signal (TP2)
: §

50v/cm— , <——Disk Drive Voltage (TP4)

2v/cm ‘ : _’____Lissajm_xs Figure with Pickoff
i , Error Signal (TP2) on vertical
L ) ) o _‘J v and Disk Drive Voltage (TP4)

on horizontal
Figure 7-15, Oscillogram 7, 4: Pickoff Error Signal Phasing With Re-

spect to Disk Drive Voltage. Normally Used for Error Channel
. Phasing Checks. (Notc that the error signal has been reversed
between the top and bottom traces)
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-~ String Amplitude Reference (TP6)

~——Disk Pickoff Voltage (TP7)

- Lissajous Figure with String
Amplitude Reference (TP6) on
vertical and Disk Pickoff Vol-
tage (TP7) on horizontal.
(Improper Phasing)

+———String Amplitude Reference (TP¥6)
-——Disk Pickoff Voltage (TP7)
Lissajous Figure with String

Amplitude Reference (TP6) on
vertical and Disk Pickoff Vol-

——ee

e e sr—y T

e

tage (TP7) on horizontal.
(Proper Phasing)

Oscillogram 7.5: String Amplitude Reference Phasing

With Respect to the Disk Pickoff Voltage

-——Torque Pulses (TP5)

-—Disk Drive Voltage (TP4)

i -——Lissajous Figure with Torque
Pulses (TP5) on vertical and

Disc Drive Voltage (TP4) on

horizontal (Improper Phasing)

J -——Torque Pulses (TP5)

-——Disk Drive Voltage (TP4)

, -——Lissajous Figure with Torque
e J Pulses (TP5) on vertical and

e it S W Al

Disc Drive Voltage (TP4) on
horizontal (Proper Phasing)

Oscillogram 7.6: Torque Pulse Phasing With Respect to
the Disx Drive Voltage
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<———Demodulator Reference (TP1)
~——Pickoff Error Signal (TP2)
-——Demodulator Output (TP3)
-—Disk Drive Voltage (TP4)

«—— Torquing Pulses (TP5) (Max-
imum torquing to move plat-
form CCW when viewed from
instrument end)

<———Demodulator Reference (TP1)
<+——Pickoff Error Signal (TP2)
<~—Demodulator Output (TP3)
«——Disk Drive Voltage (TP4)

«—— Torquing Pulses (TP5) (Max-
imum torquing to move plat-
form CW when viewed from
instrument end)

7-18, Oscillogram 7.7: Representdtive Signals When Torquing

‘Both Directions

<+——Demodulator Reference (TP1)
-———Pickoff Error Signal (TP2)
<+———Demodulation output (TP3)
-——Disk Drive Voltage (TP4)

<« Torquing Pulses (TP5) {1/2
maximum rate to move plat-
form CCW when viewed
from instrument end)

——Demodulator Reference {(TP1)
-—Pickoff Error Signal {(TP2)
-—Demodulator Output (TP3)
-——Disk Drive Voltage (TP4)

+——Torquing Pulses (TP5) (1/2
maximum rate to move plat-
form CW when viewed from
instrument end)

Figure 7-19, Oscillogram 7.8: Representative Signals When Torquing
. at One-lHalt of Muximum Torquing Rate in Both Directions

i th e DAL
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0.5v/cm——a

0.5v/cme—m-w

Figure 7-

o s Yo o s

<——Pickoff Error Signal (TP2)
——Demoadulator Output (TP3)

—Demodulator Reference (TP1)

~——Torque Pulses (TP5) (Maxi-
mum torquing which would
cause CW platform rotation
when viewed from instrument
end if platform servo closed)

~—Pickoff Error Signal (TP2)

~——Demodulator Output (TP3)

o

1 ~——Demodulator Reference (TP1) >

Torquing Pulses (TP5) (Maxi-

3

> torquin ich 1
K30 i o s o .....“.:wz..&.-._.-;...wms’mnr_\;‘l'ag mum qu g Wh c wou d

cause CCW platform rotation
when viewed from instrument
end if platform servo closed)

20. Oscillogram 7.9: Error Angle Buildup During Torquing

With Platforrm Servo Loop Opened.

e aa—

i

|

Figure 7-21,
Various Turn-on and Turn-ofif Times (Qd =0, Od = 90 Degrees)

FRa st Ak S04 e ————

TR oema s"v‘
4

<—Demodulator Reference (TP1)
¢
-—Torquing Pulses (TP5)

(65270 64=0)
<— Torquing Pulses (TP5)
(05a=90 degrees, §4=0)

<—Demodulator Reference (TP1)

-———Torquing Pulses (TP5)
(052=90 degrees. 63=90 degrees)

i ~—Torquing Pulses (TP5)
S s L e A 2§ i et K (GSa:o, 6(1290 (1egrees)

Oscillogram 7.10: Representative Torquing Pulse With
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5v/cme—e «—Demodulator Reference (TP1)

~——Torquing Pulses (TP5)

(05, =%90 degrees 0;=-90 degrees
~—Torquing Pulses (TP5)

(05 =0 degrees) 63=-90 degrees

. 5v/em—-

0. 5v/cm—'—»

o

5v/cm—e «——Demodulator Reference (TP1)

-Torquing Pulses (TP5)
(fg5= + 45 degrees 043=135 degrees)
-<——Torquing Pulses (TP5)
(Bg,=+135 degrees 63=135 degrees)

0.5v/cme—u

0.5v/cme—e-

Figure 7-22, Oscillogram 7. 11: Representative Torquing Pulses With Various
Turn-on and Turn-off Times (4 = =90 degrees, 0gq = +135 degrees
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7.2.3 Data Accumulation Technique

In order to obtain torquing data using the mechanization described,
a procedure has been evolved which will be outlined here. Such a pro-
cedure is vital if repeatable and correlated data is to be obtained and
is included here to indicate the capability of this mechanization to
yield useful data. Provision is made in this procedure to monitor both
electronic stability as well as instrument stability. No attempt is made
to detail the accuracies of measurements as these will be recorded in
the actual determined data.

The test procedure follows:

General - For convenience a set of definitions is included here to
facilitate writing this outline.

1. Test Period - Total test program from start of first data
acquisition until all data is accumulated.

2. Test Session - A grouping of several data runs. Typically
a test session will occur each working day of the test period.

3. Test Run - The actual taking of one set of test data. Typically
this means changing one parameter and measuring torquing
capability.

During the entire test period all elements of the mechanization
will be left energized. The disc drive will only be turned off when
measuring the low amplitude natural frequency of the string (this will
be described later). Instrumentation may be turned off provided ade-
quate warmup time prior to data acquisition is allowed for instruments
to reach specified operating tolerances. All test data will be accumu-
lated while holding the STAR at one test temperature. Following the
test period, selected data runs will be made at different set temperatures.
Measurement of the low-amplitude natural frequency of the string will
indicate the stability of the temperature control. All test data will be
taken while holding the instrument pressure at 30 £ 10 microns. The
type of instrumentation used to acquire data will be included with the
data. Where a special procedure is uged to determine a quantity, a
description of this procedure shall be available.

Pre-Test Session Check List - Prior to the start of a test session
the following check list will be performed: '

1. Energize all required test instrumentation. Allow adequate
time for stabilization.

7-23



C5-1277/32

. 2. Measure the low-amplitude natural frequency of the string.
This is obtained by connecting one pair of instrument plates

in one leg of a balanced bridge. By driving one plate with

a stable external oscillator and sweeping frequency, resonance
of the string can be observed on an oscilloscope. Monitoring
the external oscillator frequency at the resonance on a

counter yields low-amplitude natural frequency. This para-
meter is sensitive to instrument temperature and appears in
the equations of the STAR gyro,

Measure the disc drive oscillator frequency.

4, Set an approximate saddle point with no torquing pulses
applied. The saddle point for the STAR gyro can be defined
as a setting of .both critical drive voltage (controls string
oscillation amplitude) and of string plane angle at a point
where changes in either have least effect on the instruments'’
self bias drift. This point is achieved by an iterative process
of holding one gquantity constant and varying the other. Disc
drive voltage is varied by adjusting an amplitude control
potentiometer in the disc drive oscillator. String plane angle
is adjusted by biasing the servo to force the string plane angle
to change in order to satisfy servo null requirements.

w

Check loop phasing and readjust if necessary, This check is
accomplished by returning phasing to the reference phasing
defined in Oscillograms 7.3, 7.4, 7.5, and 7.6. If any phase
shifts have occurred, these will be recorded in the data as

wn
.

they indicate electronic stakility.

6. Check loop gain and readjust if necessary. This check is
accomplished by returning gain to the reference gain defined
in Oscillograph 7.2. If gain changes occur these shall be
recorded in the data to indicate electronic gain stability.

7. Tune the rejection pulse forming network for best rejection
of cross-coupled torquing pulses. This is accomplished by
opening the servo loop, removing the d-c bias from the
torquing plate, and applying torquing pulses to the torquing
plate. The pickoff angle error signal is monitored as well
as the demodulator output, The network is tuned for minimum
change in these quantities from a no-torque to torque switch-
ing. Any tuning required shall be recorded in the data,
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Test Run Procedure - The foilowing procedure will be used to :
perform each of the test runs:

l.

2.

10,

11.

Set plate bias voltages at values for the anticipated test run,

Set an approximate saddle point with no torquing pulses
applied,

Check out loop phasing, readjust if necessary, and record
any readjustment,

Set an accurate saddle point with no torque pulses applied, *

Check adequacy of rejection of cross-coupled torquing pulses, *

Adjust phase relationship of torquing pulses with respect to
disc drive voltage to the value desired for the anticipated
test run, (See Oscillograph 7.6)

Set the amplitude of the torquing pulses to the value desired
for the anticipated test run,

Torque the instrument and adjust the torquing rate to hold
the platform steady (i.e., balance fixed instrument rates and
sensed component of earth rate),

Torque the instrument at the approximate desired torque rate
and direction for e test run, Measure and record the rate
and direction,

Measure and record the time required for platform to sweep
through a fixed angle and the angle traversed,

Torque the platform back to the original start position, Adjust
the torque rate to hold the platform steady (as in Step 8).

This latter measurement is used to indicate stability of the
instrument during the test run,

Post-test Session Check List - Repeat steps 2, 3, 4, 5, and 6 of
the '"Pre-test Session Check List" procedure,

*For elaboration see previous section on ""Pre-test Session Check

List'',
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8. EX'PERIMENTAL RESULTS AND COMPAR I SONS
TO THEORETICAL RESULTS

8.1 INTRODUCTION

Using the Laboratory mechanization described in Section 7, con-
siderable expcrimental data relating to STAR torquing was obtained.
Numerous torquing runs were performed with various parameter
configurations to provide support to the thcoretical developments in
this report.

It is worth mentioning that no effort was expended towards pre-
cision torquing of the test instrument, and no attempt towards improving
the mechanization beyond that required to obtain usable data was made.
Therefore, these data should not be assumed to reflect how well the
STAR gyro can be tor@ued.

Consideration of the accuracy of these data as well as pertinent
discussion arc included with the test results presented later in this
section. However, some gencralizations and descriptions that are
applicable to all the tests can be made here.

The readout of torquing rate was made by using a resolver to
measure platform angle. The output of the resolver was demodulated
and used to drive a Sanborn recorder. The angle swept on the recorder
chart and the time required to sweep this angle (obtained from the chart
speed and timing marks) were used to provide angular rate. Calibration
of the chart angle readout to platform angle was accomplished using a
micrometer mounted to the platform. Use of this micrometer to cali-
brate the chart allowed a convenient means of repeating platform angle
scaling. Mecasurements in the Laboratory indicated an ability to repeat
an incremental angle to one part in a hundred. It should be noted that
this does not give absolute accuracy. No attempt was made to bring in
a precision angular reference becausc the nature of the experimental
work did not require this., Measurements in the Laboratory, however,
did show an absolute accuracy within two percent. This was more than
adequate for the experimental requirements.,

The largest limiting factor to the data obtained in these experiments
was the method of measuring and holding torquing pulse amplitude to desired
values, Setting of pulse values was accomplished using a Tektronix Type
555 Oscilloscope with a Z-Preamplifier, The method used was to set
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. the peak of the pulse to the desired amplitude using the vertical magni-
fication available with the Z-unit. However, as pointed out later in
this scction, waveform distortion was evident in the torquing pulse.
Since this distortion varied as a function of the electronics configuration,
it tended to lead to incorrect settings of pulse amplitude. That is, since
torquing is only accomplished by the fundamental component of the tor-
quing pulse waveshape, any distortion which changes the apparent funda-
mental peak will lead to an incorrect setting of the pulse amplitude. The
contribution to inaccuracy caused by this difficulty is extremely difficult
to measure. Were the torquing waveform analog the amount and type
of distortion could ecasily be determined but with the integral sine wave
pulses the determination is not so evident. (At this writing no reasonable
measurement technique has been found.)

Inspection of the general data trend obtained during this test pro-
gram does yield an estimate of data accuracy. Indications are that the
mechanization is capable of providing three percent relative data.
Improvement of the pulse forming electronics would substantially improve
this figure.

The method of data accumulation closely follows the procedures
outlined in Paragraph 7.2. 3. The mechanization configuration was set
to a desired sct of parameters. The instrument was alternately torqued
from right to left and the platform angle was plotted on a chart recorder.
The chart provided angular rate. The data from the chart plus appro-
priate parameter values were recorded on data sheets., The final
pertinent values appear in the remainder of this section.

8.2 TORQUING RESULTS AND COMPARISONS

8.2.1 Absolute Value of Torquing Scale Factor — Experimental vs
Theoretical
E— \

’ To check the theoretical scale-factor expression, Equation 6-15,
thisEquation was used to determine the scale factor for the test instru-
ment. The string amplitude term in Equation 6~15 was calculated from
Equation6-21, an expression which gives the best check on the theory

because it does not depend on any of the same expressions as those being
checked (electrostatic force and string-to-plate capacity). This latter

comment is claborated upon in Section 6 immediately preceeding

I Equation 6-16.

8-2
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The values corresponding to the test instrument are:

y) = 1.74 in.

6
E = 10, 4\ psi (fused silica)
p - 2.2 gml/cc

- 2,,. 4
= 2,06\6(1b - sec )/in. (fused silica)

n 2

2H = 0.126 in.

2r = 0.0011) in.
o

-~ 2

a = .95\6 in.
= 0.188 in.

[C in
£, = 0.120 in.

and the pertinent values measured during test are:

- .8
£ - 6198 ~ "3 cps
n

(uzﬂl): 0.00864 338883

\Y = 100 volts
o
VT = 0.5 volts
= 1

Equation 6-21 then gives

Y ~ 0.00348 in.

N AR L SR S T s - 4

(8-1y

(8-2)

(8-3)



TR

C5-1277/32

and Equation 6-4, or Figure 4-12 gives

-12
Fe = 0.62X'% Ib/volt’ ‘ (8-4)
Using 6 .. Od, 0 and 1/7,_ at nominal values of zero, Equation
6-15 gives sa :
A9 = 0.332 scc/pulse for infinite flat plates. (8-5)

Using the equivalent correction for the finite, curved plates used
during the tests, from Paragraph 6.2.2

Agbcurved platcs  =1.26 x 0332
(8-6)

=0.418 s’é?:/pulse

The experimental value which corresponds to the above set of parameters
and conditions, is given by the average of the '91‘ = 09 runs of Table 8-4.

A¢ experimental = 0.345 sec/pulse (8-7)

This value is 17 to 18 percent lower than the theoretical value. There
are a number of factors which affect this difference, and the accuracy
is perhaps somecwhat better than éxpected. For example, the string is
not uniform in diameter and for the particular string under test, only

the center diameter is known. Even if the diameter were known along
the entire length it would not be known how to average this effect. The
string diameter used in calculation is 9 percent larger than the center

diameter recorded.

Strings are rejected which have diameters more than 0.00017 in.
larger than the center diameter at points 0. 30 in. from the center i.e.,
which increase more than 17 percent in diameter from the center to a '
point 17 percent of the length from the center. Thus, if we take the 25
percent point (antinodes of a uniform string) at which to measure our
diameter, it ic clear that the entire difference between theory and ex-
periment could be accounted for by this taper (\Mpis proportional to
Uz ).

Other factors contributing to this difference between measured and
thearetical scale facter could include the theoretical expression for tor-
quing force dircctly, the effect of string taper on other equations, as

8-4
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well as possible experimental error sources. In general, it is felt

" that the experimental data well substantiates the string torquing equation,

8.2.2 String Amplitude Pickoff Sensitivity — Experimental vs
Theoretical

L 4
To check the theoretical string amplitude pickoff sensitivity given

in Paragraph 6. 2.4, these equations were used to determine the sensitivity

for the test instrument. Test parameters measured at the experimental
setup are ’

Q = 52 to 62

T
C = 500 pf (8-8)
\Y% = 27.3 volts

Using these values with the parameters given in Equations 8-1 and 8-2 we
obtain from Equations 6-43 and 6-47

AC = 0.00364 pf peak
AV = 10.35to 12.3 mv peak (8-9)

as the change in voltage (all values in this section are peak) and change
in capacity for a pair of infinitely-long parallel flat plates. These values
correspond to the string oscillation amplitude obtained at the nominal
test parameter settings specified,

Because pickoff sensitivity is directly proportional to gradient,
applying the estimate of Paragraph 6. 2.2, we obtain

V finite flat plates = 0.9 (10. 35 to 12. 3)
(8-10)

]

9.3to 11.1 mv

and

i

V curved plates 1.26 (10. 35 to 12. 3)
(8-11)

= 13to 15.5 mv
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By comparison, the experimental voltages corresponding to the same
test conditions are:
AV {finite flate plates (experirﬁental) = 10.5 mv (8-12)

4
and

AV curved plates (experimental) 20.4 mv (8-13)
These values all refer back to the peak voltages across one-half of the
transformer primary. (Sce Figure 6-4)

As seen by the above results, the experimental value for the
finite flat plates lies in the theoretically predicted range. The results
obtained for the curved plates were not as good. The theoretical value
was from 32 to 48 percent lower than the actual experimental value,
However, effects such as string diameter nonuniformity could contribute
substantially to the difference obtained. A discussion similiar to that
given at the end of Paragraph 8.2.1 is applicable here and in this
light the results obtained appear satisfactory.

8.2.3 Torquing Pulse Scale Factor vs. Torquing Pulse Rate

Data were taken to determine any variation in the torquing puise
scale factor as a function of the rate at which the pulses are applied.
An Integral sine wave pulse with a peak-to-peak amplitude of 2 volts
was used. The torquing plate d-c excitation was -100 volts. The
pulse rate was varied from 154, 4 pulses/second to 3112, 8 pulses/second
(half of string frequency). The results are tabulated in Table 8-1.

Table 8-1. Torquing Pulse Scale Factor
vs Torquing Pulse Rate

Scale Factor

Data Pulse Rate LEFT RIGHT

RUN (Pulse/sccond) |sec/pulse |sec/pulse
#1-3/26/65 3112.8 -0.678 +9.680
#2-3/26/65 1608. 4 -0.0670 +0.672
#3-3/26/65 751.1 -0.666 +0.673
4-3/26/65 353.6 -0.663 +0.677
#5-3/206,65 154, 4 -0.688 +0.663
#1a-3/26/65 3112.8 -0.670 +0.680

8-6
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Using these data, the avcerage scale factor calculates to be:

Average Left Torquing Scale Factor =-0.672 s/e?/pulse
Average Right Torquing Scale Factor =+0.674 sec/pulse

These scalc factors will provide a torquing rate of approximately
2090°/hr when a pulse rate of 3112.8 pulses/second (half of string
frequency) is provided.

The greatest deviations from the averages obtained from these
data are +2.4 percent and -1.6 percent for left and right scale factors
respectively. This is considered to be within experimental error. It
should be noted that the largest deviation occurs at the lowest torquing
rate. Mention must be made of a residual torquing effect caused by
the electronics in the Laboratory mechanization. With a zero torquing
rate, because of imperfect switching at the gates which control the
torquing pulses, small noise remnants appear on the torquing plate.
Depending upon the phasing of these remnants with respect to string
velocity, small torquing rates will be introduced into these data which
vary with pulse rate. The largest effect occurs at the lowest pulse
rate. A residual torquing rate of -2°/hr was observed during these
runs with a zero pulsc rate.

8.2.4 Effect of Torque Pulse Magnitude Change on Torquing Pulse
Scale Factor

Data were taken to show that torque pulse scaling changed linearly
with the amplitude of the torquing pulse. An integral sine wave pulse
with a peak-to-peak amplitude variation from 2 volts to 0.25 volts was
used. The torquing plate d-c excitation was held constant at +100 volts.
In all casces the instrument was torqued at maximum rate (3113 pps).
The results are tabulated in Table 8-2. The final column in this table
shows the expected scale factor using the scale factor for the 2-volt

1

pe€ak-to-peak pulse as a reference, -
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Inspection of these data indicates a peak deviation from expected
results of less than 3 percent. This is considered to be within experi-
mental accuracy. Pulse waveform distortion as described in Paragraph
8.1 was evident when the pulses were closely viewed on an oscilloscope,

8.2.5 Effect of Torque Pulse Phase Shift Due to Shifts in the String
Reference Signal (2-volt peak-to-peak pulses)

Data were taken to determine the variation in the torquing pulse
scale factor with phasing of the torquing pulse. An integral sine wave
pulse with a peak-to-peak amplitude of 2 volts was used. The torquing
plate d-c excitation was +100 volts. Variation in phasing with respect
to a zero reference between -39 degrees and +32 degrees was per-
formed. All runs were performed at the maximum pulse rate of this
mechanization, specifically, one-half string frequency. The results
of these runs are given in Table 8-3. Figure 8-1 is a plot of data for
both the right and left torquing pulses.

It is evident in Figure 8-1 that data points do not perform a par-
ticularly good job of tracing a smooth curve. Theoretically, these data
should track a cosine curve and the solid curves in the Figure are
cosine curves drawn for reference. "With data as shown, both the left
and the right torquing pulse scale factors deviated as much as 8 percent
from the thcoretical drawn curves. These deviations, being quite large,
require discussion.

The method of shifting the phase of the torquing pulses in the
Laboratory was to shift the phase of the string reference signal prior
to switching. An oscilloscope was used to monitor the amount of phase
shift. This was accomplished by triggering the scope from a stable
reference (Disc Drive Pickoff Signal) and using the calibrated time
sweep of the scope to measure phase angle. Between oscilloscope
accuracy and operator capability, it is estimated that the phase angle
setting could be off as much as *3 degrees. It is difficult to express
this uncertainty as a percentage error in the scale factor data because
of the cosine relationship. At the point where the largest deviation
occurred (@ . = +24°) a -3 degree error in setting g . would cause a
3.5 percent error in scale factor. Because this uncertainty did not
entirely explain the roughness of these data, further Laboratory inves-
tigation was done. Observation of the Z-volt pcak-to-peak pulses on
the oscilloscope showed quite substantial distortion of the pulse wave-
form. Obvious flattening of the pulse peak due to lack of sufficient
amplifier lincar range was evident. Because the distortion was so
noticeable, it was decided to redo the phasing runs at a lower ampli-
tude. Thesc data are presented in Paragraph 8. 2. 6.

8-9
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Table 8.3. Torquing Pulse Scale Factor vs Pulse Phasing
(2 volt p-p pulses)
Data Pulse Phasing Scale Factor
Run Angle (6 ) ’_\Left /&ight
(Deg) sec/pulse sec/pulse

#1-3/30/65 0 -0.672 +0. 680
#2-3/30/65 +8‘ -0.638 +0.648
#3-3/30/65 +16 -0.603 +0.613
#4-3/30/65 +24 -0.562 +0. 567
#1-3/31/65 0 -0.675 +0.675
#2-3/31/65 +8 -0.666 +0. 669
#3-3/31/65 16 --0.646 +0.644
#4-3/31/65 +24 -0.603 +0.602
#5-3/31/65 +32 -0.559 +0. 558
#6-3/31/65 0 -0.672 +0.668
#1-4/1/65 0 -0.675 +0.682
#2-4/1/65 -8 -0.672 +0.677
#3-4/1/65 -16 -0.622 +0.631
#3a-4/1/65 -16 -0.631 +0.635
#4-4/1/65 -24 -0.597 +0.602
#1-1/2/65 -39 -0.507 +0.493
#1-4/28/65 0 -0.678 +0, 682
#2-4/28/65 -8 -0.688 +0.690
#3-4/28,/65 -16 -0.654 +0.658
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Table 8. 3. (Cont)

Data Pulse Phasing Scale Factor
Run Angle (Gr) Left Right
(Deg) sec/pulse sec/pulse
#1-4/29/65 0 ' -0.683 +0.684
#2-4/29/65 +8 -0.678 +0.677
#3-4/29/65 16 -0.649 +0.657
#4-4/29/65 + 2 v - -0.658 +0.657
#5-4/29/65 +32 -0.590 +0.593

8.2.6 Effect of Torquing Pulsc Phase Shift due to Shifts in the String
Reference Signal (1-volt peak-to-peak pulses)

Because of difficultics outlined in Paragraph 8.2.5, substantial
data were taken to determine torque pulse scale factor vs phasing for
l-volt peak-to-peak pulses. As before, the torquing plate d-c
excitation was 100 volts. Variation in phasing between +40 degrees
and -40 degrees from the zero reference position was done. All runs
were performed at a pulse rate of one-half string frequency. The
results are given in Table 8-4. Fligure 8-2 is a plot of the data for
both left and right torquing pulses.

As evidenced by Figure 8-2, the data shows a reasonably good corre-
spondence to the theoretically expected cosine curve. A substantial
improvement over data obtained using the 2-volt pcak-to-peak pulses
of Paragraph 8. 2.5 was obtained. Check of the data points showed
them to be within 4 percent of the theoretical values. As mentioned
in Paragraph 8. 2.5 this range of data accuracy approaches the uncer-
tainty of sctting the phasing of the torquing pulses. Also, some small
change in distortion as a function of shifting phase could be observed.
This, as discussed in Paragraph 8.1, would cause error in setting
pulse amplitude. Thesce error terms, plus the uncertainty in angular
rate read out, Indicate these data to be well within explainable

cxperimental uncertainty.
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Table 8-4. Torquing Pulse Scale Factor vs Pulse Phasing
(1-volt p-p pulses)

Data Pulse Phasing Scale Factor
Run Angle (6)) Left Right
(Deg) sec/pulse sec/pulse
#1-5/3/6% 0 -0. 344 +0. 347
#2-5/3/65 ~8 -0. 338 +0. 341
#3-5/3/65 +10 -0. 333 +0. 333
#4-5/3/65 24 -0. 314 +0.312
#5-5/3/65 +32 -0.303 +0.303
¥6-5/3/65 +40 ~0.283 ~0. 288
#1-5/4/65 0 -0. 346 +0. 347
#2-5/4765 -8 -0.273 +0.277
#3-5/1/65 -16 -0. 325 +0. 332
| #14-5/4/65 -2+ -0. 307 =0. 311
#5-5/4/65 -32 -0.294 +0. 302
#6-5/4/65 - 40 -0.272 +0.278
' #5a-5/4/65 -32 -0.297 +J. 304
l #6a-3/4/65 -40 -0.269 +0.275
l #1-5/10/05 0 -0. 346 +0. 341
¥2-5/10/65 -8 -0.336 0. 333
! #3-5/10/65 -16 -0.335 +O.’336
I #4-5/10/65 -2+ -0.314 +0.314
#1-5/11/65 -16 -0. 337 =0.335
|
8-14
]
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Table 8-4. (Cont)
Data Pulse Phasing Scale Factor -
Run Angle (Gr) Le ft Right

(Deg) sec/pulse sec/pulse
#2-5/11/65 -16 -0. 328 +0. 323
#3-5/11/65 -16 -0. 329 +0. 331
44-5/11/65 -24 -0. 320 +0.317
#5-5/11/65 -32 -0. 300 +0. 300
#6-5/11/65 -40 -0. 264 +0. 261
#7-5/11/65 -24 -0.318 10. 315
#8-5/11/65 -8 -0.337 +0. 336
#1-5/12/65 +8 -0. 347 +0. 344
$#2-5/12/65 -16 v -0. 341 +0. 338
#3-5/12/65 +24 -0.333 +0.329
54-5/12/65 +32 -0. 300 +0.295
#5-5/12/65 +40 -0.-279 10,271
46-5/12/65 40 -0.275 +0.270
#7-5/12/65 -32 -0. 300 +0.296
#8-5/12/65 =24 -0.328 +0. 323
#9-5/12/65 +16 -0. 341 +0. 338
410-5/12/65 -8 -0. 346 +0. 343
#11-5/12/65 0 -0. 347 +0. 343
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8.2.7 Effect of Teinperature Variations on Torquing Pulse Scale
‘ Factor

As shown in the theory, any temperature changes of the STAR
will cause both first and second order effects. The first order effect
will be to change the amplitude of the string oscillation because of

change in string tension due to instrument contractions and expansions.
This change in amplitude would directly change torque pulse scale
factor should the amplitude of the pulse be held constant. Second order
temperature cffects will cause additional small changes in instrument
geometry thercby affecting pickoff sensitivities. The mechanization
accuracy was such that only the first order effect on scale factor could
be obsecrved.

The mechanization used in the Laboratory derives the torquing
pulses from the string reference pickoff. This causes the pulse ampli-
tude to directly vary with string amplitude and hence in normal oper-
ation holds the torquing scale factor constant. Because of lack of
stability in the electronics (see Paragraph 8.2.10), check of scale factor
consistency as a function of temperature variations could not be accom-
plished. Instcad, for test purposes, it was decided to change instru-
ment temperature and reset the torque pulse back to the nominal pulse
amplitude. From theoretical expectations a changed scale factor could
be determined and compared to the experimental scale factor.

The manner in which these data were taken follows: Temperature

?Z;‘:I

was changed from day-to-day. At cach new temperature sect point the
torquing pulse amplitude was set to 1-volt peak-to-peak. Also, at each
set point, the u¢™ of the instrument was accurately measured (see
Paragraph 7.2. 3, Step 2 of the Pre-test Session Check List). This quan-
tity provides a direct determination of string oscillation amplitude and
allows prediction of torquing pulse scale factor at the set temperature,

It can be shown (for example, see Equations 6-15 and 6-21) that the tor-
quing pulse scale factor varies inversely as the square root of the
quantity (u-1). Using this relationship, predictions as to expected
torquing scale factor werc made.

The expected results and data obtained from these temperature
runs are given in Table 8-5, It should be noted that the calculated scale
factors are determined using the average scale factor at the normal
operating temperature as a reference. Hence, each scale factor is ob-
tained from the sqguare root of the ratio of (uz-l) at the reference temp-
eratureto(uz-l)at the changed temperature. For reference purposes, the

2 2 .
*The ratio uZ, strictly speaking, is u, '(un at n=2) of Sections 5 and 6.
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approximate instrument case temperaturce is given in these data. It |
should be mentioned that the u? term is an easily measurable term

from which string amplitude can be calgulated directly on a theoretical |
basis. (String amplitude, on the other hand, can not so easily be .
obtained directly from case temperature). - |

As can be seen from these data, the correlation between the pre-
dicted and actual data were quite good. The largest deviation occurred ‘
with large temperature changes and these were less than 3 percent. |
As the u” term was decreased the string amplitude decreased and thus
the signal available from the string reference pickoff became smaller. |
In order to hold torque pulse amplitude constant, it was necessary to
make up this lost gain in the electronics. This had the effect of intro-
ducing variations in the torquing pulse waveform. It is felt that these
variations were sufficicnt to cause these data to be no better than 3
percent without considering uncertainty in angular rate determination.
It is worth mentioning that increasing instrument temperature more
than 97°F (u” less than 1.00231) caused the string amplitude reference
signal to decreasc to a value less than a minimum for the electronics
to hold the torque pulse constant. ’ |

8.2.8 Effects of Torque Pulse Phase Shifts in Pulse Turn-On Phase |
and Pulsce Turn-Off Phase |

Following suitable modification of the Laboratory mechanization, |
it was possible to change the relative turn-on and turn-off times for
the torquing pulse. Paragraph 3.7, of this report presents the theory
as to the cffect such changes will have on the torquing scale factor. For
convenience, the final result of the theory, specifically an equation
giving normalized torquing scalg factor as a function of pulse phases
is repeated in Figure 8-3. Also included in the Figure is a sketch of

- the torque pulse waveform defining terms. Figure 8-4 is provided

for information only to aid understanding of the effect of various pulse
turn-on and turn-off times. It gives representative waveforms for a
few different switching times.

To show the effect of pulse turn-on and turn-off tirnes on scale
factor more conveniently, a set of curves using the just-described
equation is plotted in Figure 8-5. Using the Laboratory mechanization,
it was attempted to experimentally come up with the same set of curves.
As in previous data scts, a one-volt peak-to-peak pulse was used with
a +100-volt d-c plate excitation. In all runs the instrument was torqued
at pulse rates of onc-half string frequency. Data points obtained are
given in Table 8-6. Duata points are plotted on Figure 8-5 next to the
theoretical curve, to the same scale factor, to facilitate comparison.

8-18
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Comparison of the two sets of curves in Figure 8-5 viclds some
Interesting observations.,  As cvidenced by the sketches, the general
shape of the experimental curves corresponds to the theoretical curve.
The experimental curves were normalized to unity at the §, = @ o=
0 point. For a given Gd, the experiment curves provide consis?élntly
higher scale facrors than the theoretical curve except at the curve
where Gd =0 (.\(b/!(_ = 1), Descriptively, the family of curves obtained
experimentally is not symmetrical about the curve of 64 = 90° as in-
dicated by the theory. In addition, data arc available (see Paragraph
8.2.9, Data Run #6a - 6/8/65) for the point 64 = -180° and 6, =0°.
At this point, Aé/k; - 2 as predicted by the theory. Thus, the experi-
mental family of curve from €4= 180° to 0° appears to repeat the
shape of the family of curves from 6d = 0°to -180°.

At this time, it is not known why thesce experimental results
differ, as they do, from theoretical. It is difficult to conceive of a
reason for the lack of non-symmetry obtained experimentally. Con-
sider the data for 9d = 90", According to the data AP/K - 0.6,

i.e., the scale factor is six-tenths of its nominal value for a full
integral sine wave pulse. Since for @, = 90° the pulse is exactly one-
half of an integral sine wave, it is quite hard to see how A®Y/K can
be anything but 0. 5. Both theory and intuition dispute the experimental
results. On the other hand, reasonable care was c¢xercised when per-
forming the experiment. Hence, the results cannot be ignored.

Thus, while the general shape of the theoretical curves has been
duplicated, the numerical values have not checked within what is be-
licved to be the accuracy of the test. If we could take the maximum
deviation of 20 percent and assume the §4 and fs, error terms remain
within this deviation, this accuracy would be, certainly, satis-
factory for an error expression; however, we have not proven the -
validity of such an extension, although it seems reasonable intuitively.

8.2.9 Effect of D-C Torquing Bias

'

To investigate for possible side effects, one torquing run was
made with the torquing plate dc-excitation reduced from +100 to +50
volts. An integral sinc wave pulse with 2 volts peak-to-peak amplitude
was used and the pulse rate was maxinum (3113 pps). The Data Run
(#1-4/5/65) vielded -0.330 se¢/pulse and +0. 330 $¢c/pulse for the
left and right scale factor, respectively. The average scale factor
for a 2-volt peak-to-peak pulse frgm Paragraph 8. 2.3 was:

Left Scale Factor =+ -0.672 sec/pulse
Right Scale Factor = +0.674 scc/pulse

8-24
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. Theory indicates that halving the d-c plate bias halves the scale
factor for d-c¢ cxcitations of this magnitude. Thus, the scale factors
should be:
Left Scale Factor (Expected) = -0.336 sec /pulse

Right scale Fuactor (Expected) = 0. 337 sec/pulse
The results agree within 2. 5 percent.

§.2.10 Effect of Hurmonicy

In an cffort to detect any performance detriment due to the quite-
considerable harmonics gencrated by the single integral sine wave pulse
normally used, two additional data sets werce taken. The existence of
these harmonics and the lack of any known cffects on string operation is
discussed in Paragraph 3. 4.

These two data sets consisted of first comparing the normal
"single' pulse torquing pulse waveform to analog torquing and then
comparing to the "optimum' torquing pulse waveform {Paragraph
3.5.2) for a string operating in the second mode, i.e., a double-
integral sine wave pulse. Data obtained from these runs are given in

-3
>

. Figure 8-6.

o3

cm Comparison of the runs yielded no detectable difference in tor-

‘ quing scale factor due to torquing with "optimum’' or "'non-optimum?

- waveforms, within the accuracy of the mechanization. Thus, within

£y the accuracy of the test, it still may be said that we know of no specific

cffect of harmonics on string motion.

It should be mentioned that no particular difficulty was encountered
in achieving the double integral sine wave pulse.

8.2.11 Torque Pulse Phase and Amplitude Stability

€3

Early in the experimental program attempts were made to mea-
sure the short-term and day-to-day stability of the STAR torquing
pulses. The pulses were monitored on a Tektronix 555 Oscilloscope
using a Type Z Preamplifier. Phasing was monitored using both
Lissajous techniques and the calibrated time sweep of the scope.
Amplitude was monitored using the vertical magnification of the Type Z
Preamplifier. It quickly becamec evident that the available circuitry
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Figure 8-6. Runs to Determine Scale Factor as a Function
of Various Torquing Pulse Waveforms
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was not stable enough to allow taking any meaningful data on stability.
Both amplitude and phasing were drifting quite rapidly. Phase for
example showed short term (a few hours) drift of +3 degrees. It was
felt that the available circuitry did not pro.vide indication to either the
ability to design or to obtain circuitry which would meet necessary
performance specifications. Since the experimental program was set
up primarily to substantiate theorctical results, no effort was made to
improve the electronic stabilities. It should be noted that the stability
was sufficient to allow the taking of torquing data, as the pulses were
constantly monitored and corrected as necessary.

8.3 CONCLUSIONS

In general, the experimental work provided substantial verification
of the theory relating to torquing the vibrating string gyro. DBut, more
importantly, the Laboratory work did not show any iundamental prob-
lems in torquing the STAR which may have been missed or neglected.
Some effects (Paragraph 8. 2.8) did turn up which require additional
investigation, but thcese do not appear to seriously impair either the
precision or reliability to which the STAR gyro can be torqued.

Specifically, the expcerimental cffort provided the following
most noteworthy results:

1.  The torquing pulse scale factor for a given physical instru-
ment can be predicted satisfactorily from theory.

2. In a similar fashion, the pickoff amplitude sensitivity is
predictable.

3. Within the mechanization accuracy, no effects due to har-
monic components in the torquing waveform are evident.

4. Phase shifts of the torquing pulse with respect to the string
velocity cause the scale factor to change according to the

predicted cosine relationship.
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